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1. Introduction

The digitalization of pathology images supports the work of clinicians by enabling
automation, increasing analysis quality, and reducing their workload. For example, traditional
glass slides acquired by microscopes can now be digitized into whole-slide images (WSIs).
WSIs are pyramidal images with access to global tissue features at a low resolution and cell
level morphological features at a high resolution (Figure 1). They are used as the gold
standard information source for cancer diagnosis. Deep learning can aid in their
classification by identifying and segmenting tissues containing tumors [2,4,5].

Figure 1: Example of a whole-slide image depicting the global and zoomed-in tissue features
(adapted from [1]).

WSIs can be as large as 100K×100K pixels, and thus cannot be processed by a neural
network with a reasonable amount of memory and time. Modern multi-instance learning
(MIL) processes each slide image as a bag composed of a set of patches (instances) and
aggregates them to produce bag-level classification via an attention mechanism [2,6]. A
recent approach, termed DAS-MIL [2], leverages the pyramidal-structured WSIs by first
performing self-supervision to extract instance features at different scales, followed by
learning a deep learning model to perform a bag-level classification. DAS-MIL proposes the
use of Graph Attention Networks (GAT) [7] to perform representation learning on the
multi-scale WSI patches, by setting the following fixed choice of graph neighborhood
structure:

Each node is connected to the nearest 8 patches within the same scale and lower
resolution patches are connected to higher resolution patches they contain.

Features extracted by GAT are then inputted into a MIL model to obtain bag-level
classification via aggregating instance-level prediction.



While existing graph neural networks typically include all neighbors in the same scope for
feature aggregation [8], a recent study has shown that adapting each neighborhood to attend
to more relevant neighbors can enable GAT to learn better representations [3]. This work
proposes various mechanisms for downweighting irrelevant neighbors during attention
computation. Following the same line of thought, we examine whether the fixed choice of
graph neighborhood in [2] induces the most relevant neighbors that would allow for optimal
GAT representation learning.

Our contributions are:

1. We contribute quality of life (QoL) improvements based on machine learning
engineering best practices: the use of repeated metric measurements and three-way-splits.
We elaborate how our QoL improvements allow for a more reliable and trustworthy metric
measurement.

2. We empirically validate that random intra- and inter-scales selection of edges is a
more performant design choice than the fixed neighborhood structure proposed in [2]. This
shows that the fixed choice in [3] does not induce the most relevant neighbors for GAT
aggregation and a random graph family can instead be chosen to parametrize the
neighborhood structure for GAT.

2. Methodology

2.1 Quality of life (QoL) improvements: fixing data leakage and
increasing the approximation quality of generalization performance

We find that the implementation of [3] makes use of a two-way split, training and test,
instead of a three-way, training, validation and test. This is due to the small number of WSIs
under analysis. For instance, Camelyon16 has 270 WSIs for training. However, for obtaining
the best performing model weights, DAS-MIL relies on the test set. This test data leakage
can cause the trained model to not generalize well in practice [9]. We extract ten percent of
the training set to create a validation set. We use this validation set for best model selection.

For every proposed method, we perform a full training-validation-test loop ten times to obtain
a better approximation of generalization performance.

2.2 Random graph attention networks

Motivated by the observations in [3], we examine whether the graph structure proposed in [2]
(Figure 2.a) for DAS-MIL induces the most relevant neighbors for attention aggregation. We
address this by choosing random edges between nodes/patches intra- and inter-scales
instead of based on nearest neighbor (Figure 2.b). We hypothesize that replacing nearest
neighbor edges with randomly selected edges can induce more relevant neighbors for an
improved information flow across the WSI. We quantify this relevance by measuring
predictive performance for tumor classification.



Figure 2: (a) Original graphs. (b) Random graph (E=8).

3. Experiments

Similar to in [2], we use the Camelyon16 dataset and report the average accuracy and AUC
(over 10 runs with different seeds).

3.1 QoL improvements

We investigate the impact of performing and summarizing the results from repeated runs
and three-way-split (See Section 2.1 for definition). The results are summarized In Table 1.

We first observe that for the two-split runs, the test performance metric values obtained from
single runs (DAS-MIL results from [2]) are outlying with respect to the mean and standard
deviations we have computed (DAS-MIL from our QoL-improved run). We also observe that
our QoL-improved run with a three-way-split yields lower test performance metric values.
The metric values reported by the two-way-split are likely to be inflated and are an
overestimate of the true generalization performance.

These results indicate the importance of summarizing from repeated runs and
three-way-split in a machine learning pipeline. We propose the use of our DAS-MIL metric
values instead of the ones reported in [2] when evaluating the model proposed in that paper.

Model
Camelyon16 (train-test) Camelyon16 (train-val-test)

Accuracy AUC (Lower) Accuracy AUC (Lower)

DAS-MIL
results from [2]

0.945 0.973 — —

DAS-MIL
from our

QoL-improved
run

0.909 ± 0.004 0.947 ± 0.003 0.897 ± 0.004 0.942 ± 0.003

Table 1: Results obtained by running the baseline using the two different splits under
analysis (train-test, and train-val-test).



3.2 Random graph attention networks

We empirically compare DAS-MIL with fixed neighborhood structure [2] and DAS-MIL with
random edges. All test set performance metric values are computed using the QoL
improvements presented in Section 3.1.

Table 2: Results obtained by running DAS-MIL with various numbers of random edges (E).
The top-2 results for each metric are in bold.

We observe that DAS-MIL with random edges generally outperforms DAS-MIL, except for
when E=1 and E=32. The top performing random models tend to use fewer edges than the
fixed selection in [2], with E=2 and E=4. This shows that the random edges are able to
induce more relevant patches for GAT aggregation.

4. Conclusions

When performing graph attention computation, it is vital that the relevant nodes are
connected. We formulated a random graph variation of DAS-MIL that outperforms the fixed
nearest-neighbor selection. For future WSI classification work, we conjecture that the choice
of neighborhood should be treated either as an inferred latent variable (similar to [10]) or
estimated as a hyperparameter. We posit that DAS-MIL with random graph neighborhood
selection can be a strong and simple baseline for these more complicated learnable
alternatives.

Model
Camelyon16

Accuracy AUC

DAS-MIL 0.897 ± 0.004 0.942 ± 0.003

DAS-MIL
with random

edges
(Ours)

E=1 0.901 ± 0.012 0.918 ± 0.017

E=2 0.917 ± 0.015 0.957 ± 0.011

E=4 0.898 ± 0.011 0.958 ± 0.003

E=8 0.908 ± 0.005 0.939 ± 0.003

E=16 0.902 ± 0.007 0.943 ± 0.006

E=32 0.892 ± 0.010 0.942 ± 0.005
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