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Abstract—Per-object distance estimation is a critical task in
computer vision, particularly in the context of autonomous sys-
tems and object recognition. We explore state-of-the-art tech-
niques, challenges, and advancements in per-object distance es-
timation and tackle the intricate task of estimating distances of
objects within urban outdoor settings using single images. Tradi-
tional approaches to distance estimation often rely on geometric
principles and sensor data, which may have limitations in complex
real-world scenarios. Recent developments in deep learning have
revolutionized this field, enabling the creation of models capable
of predicting distances directly from image data. These models
leverage convolutional neural networks (CNNs) and other deep
learning architectures to learn intricate relationships between
object appearance and distance, leading to impressive results. The
study considers two reference methods for assessment: DisNet [1]
and an architecture introduced by Zhu et al. [2] Nonetheless,
contemporary state-of-the-art models focus on extracting local
features through bounding boxes and region-of-interest (ROI)
pooling, inadvertently neglecting the broader visual context of the
entire image. The principal goals of this project revolve around
assessing the effectiveness of the existing baseline methods and
proposing an architecture that incorporates both local and global
spatial reference frames to improve the accuracy of per-object
distance estimation. To address privacy concerns, we have opted
to utilize synthetic data in our approach.

Index Terms—Distance Estimation

I. INTRODUCTION

Among past and novel challenges, the Computer Vision
community has a long-standing commitment for 3D visual
perception, i.e., seeing the surrounding environment in all three
spatial dimensions (including depth). In this respect, humans
continuously practice such a capability in everyday life: for
example, when approaching a stop sign, the driver visually
assesses the remaining distance to the sign and adjusts the
car’s velocity accordingly. Such a simple scenario suggests the
importance of a reliable 3D automatic perception, especially
for AI systems dealing with autonomous driving and video
surveillance applications.

While many researchers focused on popular tasks such as
object detection and segmentation, a few efforts have been
spent on object-specific distance estimation. Herein, the goal
is to estimate the distance of a target object from the camera
when it is projected onto the image plane. Pioneer works [3], [4]
accomplished it with the pinhole camera model and the standard
projective transformation; unfortunately, these approaches are
viable only in static scenarios and suffer from radial lens
distortion, hindering the estimation for objects located far from
the center.
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Fig. 1. Methodology overview: our contribution differs from the state of the
art by integrating a global space to the features used by the distance regressor

Instead, modern approaches [5], [6] rely either on geometric
or feature-based strategies. The former treat the problem as a
regression task and attempt to learn the relationship, expected
to be roughly linear, between the visual size of an object (such
as the height of its bounding box) and its distance. In contrast,
feature-based approaches exploit deep learning architectures,
e.g., Convolutional Neural Network (CNN), and incorporate
visual cues of the target object, as well as global information
related to the scene.

This project aims to investigate and propose an approach
for per-object distance estimation given a single image. In
greater detail, the focus of the project is on outdoor urban
scenarios: namely, the images come from a security camera
filming a public place (e.g., a square or a street) with moving
pedestrians and cars. Due to privacy concerns, the project relies
on synthetic data only and specifically on MOTSynth [7],
a recently released synthetic dataset for pedestrian detection,
tracking, and segmentation. To help the students, the bounding
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Fig. 2. Core architecture: Local features are extracted using RoI pooling, while global features are obtained through Average pooling.

boxes of the region of interest (ROI) will be provided at both
training and evaluation time, along with the entire original
image.

We compare our approach with two baselines: DisNet [1], a
simple regression-like approach based on Multi-Layer Percep-
trons (MLPs) that is fed with the relative width, height, and
diagonal of bounding boxes. The architecture proposed by Zhu
et al. [2] relies on ResNet as a feature extractor and RoI pooling
to build object-level representations.

Figure 1 illustrates the architecture upon which our approach
is based, as presented in Zhu et al. [2]. Nonetheless, the
regression model employed relies solely on local features,
specifically those associated with the input bounding boxes.
This methodology could potentially introduce inaccuracies,
particularly for objects situated farther away, as the bounding
boxes are quite small, containing limited information. Con-
sequently, we incorporate global features that encompass the
entire image, capturing the broader visual patterns that extend
over the individual bounding boxes.

We extend Zhu et al. [2] in two ways:
• The local representation is combined with a global image

representation in order to reason about the surrounding
environment

• A recurrent version that processes bounding boxes from
highest to lowest, as it helps coherence among similar
boxes.

II. METHODOLOGY

In light of the limitations of the traditional geometrical
algorithm for distance estimation, we propose a novel learning-
based approach for robust distance estimation specific to ob-
jects. Our model provides direct estimations of physical dis-
tances using RGB images and object bounding boxes. The core
components of our base model consist of four key elements:
a feature extractor backbone, a local feature pooling, a global
feature pooling and a distance regressor (as illustrated in Figure
2).

Feature extractor: In our model, an RGB image is pro-
cessed through an image feature learning network, extracting
feature maps that encompass the entire RGB image. We lever-
age the well-established ResNet34 as our feature extractor.

Local feature pooling: We feed the feature map extracted
by the feature extractor, along with the object bounding boxes
(which pinpoint object locations within the image), into an ROI
pooling layer. This process yields a standardized feature vec-
tor, encapsulating image characteristics within the designated
bounding box regions. Consequently, this operation furnishes
localized information to each individual object.

Global feature pooling: Our contribution deals specifically
with the integration of global features. We apply a global
average pooling on the feature map coming from the feature
extractor. The resulting vector is concatenated with the local
features in order to fuse global and local information. The
feature map extracted by the feature extractor follows an
additional branch that ends up in an average pooling, act to
compact the information of the whole image. Then, this global
feature space is concatenated with all local feature vectors.

Distance regressor: The global-local feature vector Fi

passes through the distance regressor to predict the distance
value for each object. The distance regressor comprises three
fully connected (FC) layers, with layer sizes of 1024, 512, 1.
To ensure that the predicted distance (denotated as D(Fi)) is
positive, a softplus activation function is applied to the output
of the final fully connected layer. Our loss for the distance
regressor Ldist can be written as:

Ldist =
1

N

N∑
i=1

smoothL1(d
∗
i −D(Fi)) (1)

III. RESULTS

We train the network with the ADAM optimizer, using a
beta value (β) of 0.5 for 15 epochs. The learning rate begins at
0.001 and undergoes exponential decay after 10 epochs. After
training, our base model is capable of directly predicting object-
specific distances when provided with RGB images and object
bounding boxes as input.

The metrics considered in the evaluation error are the thresh-
old distance (δ<d where d is the distance from ground truth),
the Root Mean Squared Error (RMSE), the RMSE logarithmic
(RMSElog), the Average Localization Precision (ALP), the Av-
erage Localization Error (ALE), the Squared Relative difference
(Squa.Rel.) and the Absolute Relative difference (Abs.Rel.).



Metrics δ<1.25 ↑ δ<1.252 ↑ δ<1.253 ↑ RMSE ↓ RMSElog ↓ ALP@1m ↑ ALE ↓ Squa.Rel. ↓ Abs.Rel. ↓

DisNet [1] 87.6% 98.7% 99.4% 2.930 0.162 31.99% 2.263 0.480 0.124

Zhu et al. [2] 47.4% 84.4% 94.3% 6.800 0.395 12.74% 5.159 1.642 0.229

Ours 68.2% 92.8% 98.6% 5.085 0.245 18.47% 3.806 1.233 0.205

TABLE I
COMPARISON OF DISNET [1], ZHU ET AL. [2] AND OUR DISTANCE ESTIMATORS ON THE SMALL VERSION OF MOTSYNTH [7] (TEST SEQUENCES 2 AND

6). OUR METHOD EXHIBITS SUPERIOR PERFORMANCE ACROSS ALL THE METRICS REPORTED.

Metrics δ<1.25 ↑ δ<1.252 ↑ δ<1.253 ↑ RMSE ↓ RMSElog ↓ ALP@1m ↑ ALE ↓ Squa.Rel. ↓ Abs.Rel. ↓

DisNet [1] 96.5% 99.8% 99.9% 1.958 0.105 49.56% 1.418 0.160 0.077

Zhu et al. [2] 77.26% 87.67% 90.93% 12.42 0.494 45.96% 5.737 2.982 0.167

Ours 59.9% 87.25% 95.43% 9.462 0.297 24.75% 5.435 2.136 0.224

TABLE II
COMPARISON OF DISNET [1], ZHU ET AL. [2] AND OUR DISTANCE ESTIMATORS ON THE SMALL VERSION OF MOTSYNTH [7] (SEQUENCES 8 AND 9). OUR
APPROACH DEMONSTRATES EXCEPTIONAL PERFORMANCE ACROSS GLOBAL METRICS THAT DO NOT FOCUS ON SPECIFIC INTERVALS, INCLUDING RMSE,

RMSElog , ALE, AND Squa.Rel..

Fig. 3. The descent of RMSE over increasing epochs in Zhu’s model and
our approach in two distinct training setups. Our approach demonstrates a
significantly faster convergence of RMSE, surpassing Zhu’s model with a
notably lower error rate.

Due to data availability constraints, our model’s training was
limited to only 10 sequences from the extensive MOTSynth
dataset. For this reason, we conducted two separate experiments
using distinct training and test set choices to determine if the
model’s performance indicates its actual learning capabilities
or if the specific composition of the training and test sets
influences it.

In the context of result analysis, Table I showcases models
evaluated on sequences 2 and 6, designated as the test set,
with the remaining sequences comprising the training set. In
this configuration, the Figure 3 shows a graph of the RMSE
descent over epochs. On the other hand, Table II focuses on
sequences 8 and 9. The results in Table I and Figure 3 show
that our method outperforms Zhu et al. [2] model in all the
metrics, performing better results. However, the results worsen
if the method is evaluated in 8 and 9 sequences as in Table II.

This limitation arises from the fact that the model underwent
training and evaluation using a mini version of the MOTSynth
dataset. As a result, our model faces challenges when attempt-
ing to acquire scene-level features from the training subset
consisting of sequences 0-7. In contrast, it is apparent that Dis-

Net, built solely on an MLP regressor and geometric features,
demonstrates robust learning and generalization capabilities,
even when confronted with a small dataset.

IV. CONCLUSION

In conclusion, this study investigates and proposes a novel
approach for per-object distance estimation in outdoor urban
settings using synthetic data. The proposed approach ultimately
aims to bridge the gap on local information, introducing global
features, improving accuracy, and enhancing the capabilities of
AI systems in real-world applications like autonomous driving
and video surveillance. The proposed model achieves better
results in accuracy, but by varying the test dataset there may
be some large performance differences. While DisNet, being
a lighter and simpler model, performs well in any case. The
proposed approach should be tested in the future on the total
amount of MOTSynth dataset.
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