An mRNA and protein level transformer-based predictor
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Abstract

This research investigates the application of
Transformer-based —architectures in predicting gene
and protein expression levels directly from genomic and
proteomic sequences. By combining deep learning (DL)
and natural language processing (NLP) techniques, we ex-
ploit Transformers’ capacity to capture intricate sequence
patterns. We train our models from scratch on the Xpresso
dataset. QOur investigation reveals that randomly masking
5% of the DNA sequence within the Xpresso dataset does
not significantly affect the overall predictive accuracy (r2),
highlighting the robustness of the employed architecture in
handling sequence variations.

1. Introduction

Accurate prediction of gene and protein expression lev-
els from genomic and proteomic sequences has been a trans-
formative effort in genomics research. The development of
algorithms for predicting DNA characteristics solely based
on primary sequence data marked a significant milestone
[1]. Building upon this progress, the question arose: can we
extend this predictive capability to elucidate gene expres-
sion levels directly from genome sequences? This inquiry
led to the emergence of approaches, including the renowned
Xpresso model, which used deep convolutional neural net-
works to predict steady-state mRNA levels with remarkable
accuracy, even surpassing models relying on chromatic im-
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munoprecipitation sequencing (ChIP-seq) data [1].

While Xpresso represented a groundbreaking advance,
the pursuit of enhancing our ability to predict gene and
protein expression levels has continued. In a contempo-
rary context, the field has witnessed the emergence of novel
approaches, such as the Perceiver architecture [2]. This
framework addresses the shortcomings of previous mod-
els by leveraging a Transformer-based [5] architecture with
an attention mechanism that enables the capture of long-
range interactions within sequences, without the quadratic
complexity associated with standard Transformer architec-
tures [3]. Recent work of Stefanini et al. [3] introduces not
only the DNAPerceiver model for mRNA level prediction
but also the ProteinPerceiver model for protein level pre-
diction, and a combined Protein&DNAPerceiver model to
predict protein levels based on both Transcription Start Site
(TSS) and protein sequences [3].

In light of these advancements, our research extends the
utility of the Perceiver [2] architecture in the context of gene
and protein expression prediction. Specifically, we explore
the efficacy of this architecture in conjunction with various
data augmentation techniques to mask specific portions of
DNA sequences. This study aims to shed light on the im-
pact of sequence masking on the predictive performance,
elucidating whether the robustness demonstrated by the Per-
ceiver architecture remains intact when sequence variations
are introduced. In doing so, we contribute to the ongoing
dialogue surrounding the prediction of gene and protein ex-
pression levels, ultimately striving to enhance our under-



standing of the intricate regulatory mechanisms governing
gene expression.

2. Methodology & materials

In this study, we employed a variation of the Transformer
architecture known as the Perceiver to predict gene and pro-
tein expression levels from mRNA and protein sequences.
The Perceiver architecture has demonstrated its effective-
ness in various machine learning tasks, including sequence-
to-sequence tasks in the field of genomics. For our exper-
iments, we utilized mRNA sequences with a fixed length
of 20, 000 nitrogenous bases as input data. To enhance the
model’s ability to capture intricate patterns within these se-
quences, we applied a modification step to the mRNA se-
quences before feeding them into the Perceiver architecture.
In particular, we randomly mask consecutive nitrogenous
bases within each mRNA sequence as a data augmentation
technique. This masking process was carried out to simu-
late the inherent noise and complexity present in biological
data, as well as to challenge the model to extract relevant
features from partially obscured sequences. It can also be
considered a form of regularization, which is beneficial due
to the scarcity of biological data. We drew inspiration from
the work on the Perceiver architecture in our study, and as
a part of our model evaluation, we utilized the “explained
variance” 72 as a key metric. Much like the Perceiver ar-
chitecture’s ability to comprehend complex relationships in
diverse data domains, our use of explained variance as an
evaluation metric helped us gauge the models’ proficiency
in capturing and explaining the variance present in our ge-
nomic and proteomic datasets. For all of the experiments
conducted in this study, we employed a training protocol
consisting of 400 epochs, with the inclusion of early stop-
ping criteria following hyper-parameters from Stefanini et
al. [3].

3. Ablation study

To further evaluate the impact of sequence modification
on the predictive performance of the Perceiver architecture
in our study, we conducted an ablation study by exploring
different masking strategies. In addition to the initial exper-
iment where we randomly masked 1,000 consecutive ni-
trogenous bases within the mRNA sequences, we systemat-
ically investigated three additional masking strategies.

In the first variant, we masked the first half (10,000
bases) of the sequences, effectively removed the early por-
tions of the genetic information. In the second variant, we
focused on the intermediate section of the sequences and
masked the central 10, 000 bases. Finally, in the third vari-
ant, we masked the last 10,000 bases of the mRNA se-
quences, emphasizing the latter portion of the genetic code.
Here the data are suppressed and the model has been mod-
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Figure 1. This graph represents on the y-axis the mask size ap-
plied to the sequences, while on the x-axis, it shows the explained
variance 2 as a function of the mask size.

ified in order to accept the new dimension. The rest of the
experiments have been made in such a way that for differ-
ent masking size the length of the sequence has remained
unchanged, fixed to 20, 000. For every experiment, 10 runs
have been launched and the values have been average all
over the number of runs.

4. Hardware & implementation

For our experiments, we harnessed the computational
power of the Leonardo supercomputer from CINECA,
Italy’s premier supercomputing center. Leonardo, boasting
state-of-the-art hardware and substantial computational ca-
pabilities, provided the ideal infrastructure for our research.

To efficiently utilize this high-performance computing
resource and facilitate our deep learning experiments, we
employed the PyTorch library, a powerful framework for
machine learning and deep neural network development.
Leveraging PyTorch’s flexibility and GPU support, we
orchestrated our experiments to run in parallel across a
formidable array of 160 GPUs. This parallelized approach
not only accelerated the computational processes but also
ensured the scalability and efficiency required for our gene
and protein expression prediction tasks. The combined uti-
lization of PyTorch and the Leonardo supercomputer un-
derscored our commitment to employing cutting-edge tools
and infrastructure to advance our research in genomics and
bioinformatics.

5. Results & discussion

As shown in Table 1 the results of our study provide
some evidence in support of our thesis that the strategic use
of a shorter mask, covering only 1, 000 bases within the ge-
nomic sequences, yields improved predictive performance
compared to larger masks or the absence of masking the se-



Masking strategies
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Original (no mask)
Masking (first 10, 000 bases)

Masking (intermediate 10, 000 bases)

Masking (last 10, 000 bases)

0.81 +0.003
0.81 4 0.003
0.81 +0.003
0.81 +0.003

Masking (random consecutive 1000 bases)

$0.81 +0.003

Table 1. Expressed variance and epochs of the experiments, listed for each dataset employed in the manuscript

quence altogether. This finding aligns with a fundamental
concept in deep learning, inspired by models like BERT [4],
which demonstrates the utility of injecting controlled noise
into input data to enhance a model’s ability to generalize
and capture important features.

By applying a 1, 000-base mask to the mRNA sequences,
we effectively introduced a controlled level of noise into
the data. This noise mimics the inherent complexity, un-
certainty, and possible ambiguity present in biological se-
quences, challenging the model to focus on critical se-
quence segments and learn meaningful representations.
Larger masks covering substantial portions of the sequence
or the absence of masking may have overwhelmed the
model with excessive noise, hindering its capacity to dis-
cern essential patterns and relationships within the data and
this way hurting the model.

The strategic use of a shorter mask, covering only 1, 000
bases within the genomic sequences, not only improved pre-
dictive performance but also served as a form of regular-
ization in our study. Regularization techniques are widely
employed in machine learning to prevent overfitting and en-
hance the generalization capabilities of models. In our case,
the masking of sequences can be viewed as a unique form
of regularization tailored to genomics.

In the context of the work, as depicted in Figure 1, we
see that the best-performing mask size corresponds to 1,000
bases. This demonstrate the advantages of masking as a
regularization technique.

6. Conclusion

This study employed Transformer-based architectures,
inspired by the Perceiver model, to predict gene and pro-
tein expression from genetic sequences. The introduction
of a 1,000-base mask into mRNA sequences, following
noise injection principles akin to BERT, improved predic-
tive accuracy and served as an effective regularization tech-
nique. A thorough ablation study indicated that alterna-
tive masking strategies did not significantly enhance per-
formance, highlighting the importance of appropriate noise
levels. This research showcase Transformer models’ poten-
tial and the utility of noise injection for more accurate gene

and protein expression prediction, with implications for un-
derstanding complex biological processes and diseases.
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