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1 Introduction

Proteins are functional units encoded by DNA, involved in many biological processes, such as cell
signaling, regulation of gene expression, immune response, enzymatic reactions, transport, and
fundamental for the structure, function, and regulation of cells and tissues. The quantification of
protein expression levels could address many scientific questions in various applications, bringing
benefits in clinical and biological research and fields such as agriculture, the food industry, biofuel
production, and environmental science.

The mRNA expression level has been investigated for decades because of the strong correlation with
gene function and regulation to discover biological insights, correlation to disease evolution, drug
development, and other research tasks.

Several models have been developed to predict mRNA expression levels, often using CNN or
LSTM [1]. These architectures present limitations when applied to long sequences such as DNA
ones to model far-field interactions. For this reason, since 2017, the attention mechanism has become
the standard for processing long sequences because of the possibility of capturing these long-range
interactions.

This project is based on the [2]: in this work, a Perceiver architecture is applied to DNA sequences to
predict mRNA and protein expression levels. The input is a series of letters representing respectively
the nucleobases of the DNA and the aminoacids of the proteins. The output of the model is a number
representing the genic or protein expression.

2 Motivations

We explore three possible areas that we can modify to improve the performance of the original
architecture, and we use the same color to highlight the area in Figure 1:

(a) Latent dimension choice: We employ an intrinsic dimensionality estimator [3] to provide
an educated guess to the latent array dimension, differently from the original fixed size of
128.

(b) Sparsity: We deem the original consideration to use a dense 1D convolution on the sparse
input of the DNA to be suboptimal. We propose a dense representation of the Input DNA
through an embedding.

(c) Transformation of input mRNA half-life features: We learn a non-linear transformation
of the mRNA half-life features instead of directly concatenating this information as in the



Figure 1: Original architecture [2] with the modified areas highlighted.

original architecture. In this way, we could learn how to employ the RNA information
end-to-end.

3 Experiments

Starting from the reasons mentioned earlier, we devise experiments driven by practical considerations
to refine the initial architecture. We approach this in two ways: first, we work on making the training
process more efficient, and second, we tweak how the network handles incoming data. For practical
reasons, we perform the proposed experiments on one of the original architectures, particularly
the one that predicts protein expression level from gene and protein expression. However, these
modifications can be applied to the other two models.

3.1 Training parameters

We exploit the underlying cluster architecture to propose practical modifications to the training
hyperparameters to make the training loop more efficient.

• Batch size: Following best practices for the NVIDIA A100 GPUs available for the project,
we change the original batch of 96 to the closest multiple of 64, 128.

• Parallelism: We adapt the original code to work in multi-GPU and multi-node settings
using Accelerate [4], an open-source PyTorch wrapper to perform distributed training.

• Training precision: We study the effect of using mixed precision (bf16) w.r.t. full precision
(fp32).

• Efficient attention: the original architecture [2] relies on Percevier [5] to reason on the
input, which builds on top of the Transformer model [6]. Given the full-attention nature of
the network, we optimize this complex operation by employing xFormers [7].

3.2 Architecture

We propose several modifications to the input data transformation, in particular:

• Latent dimension: An important modification of the original architecture made in this
project is related to the intrinsic dimension (ID) defined for the input DNA sequence.
In detail, the idea is to approximate the number of latent units considered in the first
cross-attention layer, performing several intrinsic dimension estimators, e.g., Grassberger-
Procaccia algorithm [3], to model adequately the correlations between latent variables and
the input DNA sequence. The ID estimated is equal to 16, computed by the mean of all
intrinsic dimension estimators studied.

• Sparse input: Instead of the original one-hot encoding of the Input DNA, we take the
original indices from the dataloader representing the nucleobases, and we use an embedding
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layer to obtain learnable vectors corresponding to each base. The dimensionality of the
embedding is chosen to be compatible with the rest of the architecture, i.e. we choose 128.

• mRNA input: We learn a non-linear transformation of the mRNA half-life features by using
an MLP with a non-linearity (GELU) between the two layers. The dimensionality is chosen
to be the same as the original architecture, i.e. 8.

3.3 Results

We report the results of the experiments in Table 1, and we can divide the analysis into two parts:

• Training parameters: we can see that the adoption of mixed precision (Baseline (bf16))
brings a significant reduction in terms of training time per epoch (-9%) with a neglectable
reduction in terms of R2. By changing the other parameters (batch size, use of xFormers,
and multi-node training), we can achieve the best results, which surpass the reproduction of
the original training.

• Architecture: Reducing the latent arrays dimension (Baseline (16-dim)) decreases by 30
percent the number of parameters of the baseline model, maintaining a comparable accuracy
for all provided experiments. On the other hand, increasing it (Baseline (512-dim)) hinders
the performance, and we deem it to be overfitting since this modification introduces many
parameters (5.18 million).
The half-life projection and switching to a dense representation of the DNA do not improve
the model’s performance and introduce an overfitting phenomenon due to the number of
parameters.

Table 1: Quantitive results and comparison of the proposed modifications. We compare the number of
parameters, the number of GPUs used, batch size, latent array dimension, PyTorch dtype, and the use
of efficient Attention against the seconds necessary to complete one training epoch and the final R2.

Name Params GPUs Batch Size Latent dim Precision xFormers Time per epoch ↓ R2 ↑
Baseline 1.04M 4 96 128 fp32 ✗ 3.22s 0.1323
Baseline (bf16) 1.04M 4 96 128 bf16 ✗ 2.93s 0.1308

Baseline (bs128) 1.04M 4 128 128 bf16 ✗ 2.97s 0.1359
Baseline (xFormers) 1.04M 4 128 128 bf16 ✓ 2.76s 0.1347
Baseline (multinode) 1.04M 32 128 128 bf16 ✓ 2.47s 0.1383
Baseline (16-dim) 0.72M 4 128 16 bf16 ✗ 2.81s 0.1330
Baseline (64-dim) 0.81M 32 128 64 bf16 ✓ 2.61s 0.1267
Baseline (512-dim) 5.18M 32 128 512 bf16 ✓ 3.95s 0.1271

Ours (half-life projection) 1.04M 4 128 128 bf16 ✗ 2.93s 0.1352
Ours (dense input) 3.47M 32 128 128 bf16 ✓ 3.37s 0.0989
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