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Abstract

Accurate distance estimation for individual objects is
crucial in applications with stringent safety requirements,
such as autonomous driving, surveillance, and robotics. Ex-
isting methods can be broadly categorized into two groups:
one that relies on local information related to the target
object, including factors like its bounding box proportions
or object pose, and another that leverages visual features,
namely, local semantic scene knowledge. However, these
methods have not yet integrated both approaches, which
could prove advantageous for the task at hand. In this study,
we extend the work of Zhu et al. [24] by combining infor-
mation about the pedestrian’s pose to enhance the accuracy
of our distance estimation system.

1. Introduction
In today’s high-stakes domains like autonomous driving,

surveillance, and robotics, achieving precise object distance
estimation is crucial. Accurate measurements of distances
between objects and their surroundings are essential for en-
suring the highest safety and operational efficiency in these
critical domains.

Consequently, significant advancements have been made
in the field of distance estimation. This project is dedicated
to enhancing the outcomes achieved using a well-known ar-
chitecture proposed by Zhu et al. [24]. Such an architecture
consists of multiple modular models, providing flexibility
for modifications at various stages. The key questions ad-
dressed in this report are as follows:

• Which feature extractor outperforms the baseline
proposed by Zhu et al. [24]?

• What is the influence of different pooling methods
on the results?

• Can we enhance baseline results by incorporating
additional meta-information into the input data?

• Is there potential for improvement by introducing a
graph-based global refinement module into the ar-
chitecture?
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Figure 1. Overview of the proposed pipeline.

2. Related Works
The task of per-object distance estimation from monoc-

ular images is approached through two methods: a geomet-
ric approach [8, 9, 21], which relies solely on the bounding
box dimensions of the object (i.e., height and width), and a
feature-based approach [12, 15, 24], where a convolutional
backbone is utilized to extract visual features.

As a baseline, we adopted the methodology proposed by
Zhu et al. [24], in which they introduce a straightforward
architecture. This architecture extracts object-specific fea-
tures using RoIPool [7] from the features generated by a
ResNet [11] backbone, and subsequently, the distances are
regressed using a Multilayer Perceptron (MLP).

3. Method
We conducted a series of experiments involving mod-

ifications to the architecture proposed by Zhu et al. [24].
Specifically, we began by exploring different backbone
models, including a ResNet with an FPN [16] and the
Transformer-based backbone DINO-ViT [1]. Once we
identified the most suitable backbone, we proceeded to as-
sess various architectural variations, which included:

• Substituting RoIPool [7] with RoIAlign [10].

• Incorporating additional information related to human
pose obtained from a human pose estimator (Figure 1).



Figure 2. HPE pipeline.

• Exploiting global features through the usage of
GATv2 [3].

3.1. HPE Integration

We integrate a Human Pose Estimation (HPE) module
to feed the distance regressor with additional information
about the size of the principal body segments. As reported
in Figure 2, the process begins with cropping the images us-
ing bounding boxes. These bounding boxes are generated
through object detection or localization techniques, outlin-
ing each person in the image.

Once cropped, the image is fed into an HPE. This deep
learning model is trained to locate keypoints positions from
images. These joint positions correspond to anatomical
landmarks like shoulders, elbows, and knees. To capture the
spatial relationships and dependencies between these key-
points, a subset of the extracted ones is used to construct a
Weighted Directed Acyclic Graph (DAG). Within this graph
representation, each keypoint corresponds to a node, and the
connections correspond to edges between nodes, that are di-
rected and acyclic, ensuring no loops in the graph. Each
edge in the DAG is equipped with a weight equivalent to
the spatial distance between the vertices it connects. Fi-
nally, we transform the weights associated with the edges
in the DAG into a vectorial representation. Finally, such a
vector is processed by a regressor model to obtain the final
prediction.

3.2. GAT Integration

Although the convolutional backbone can capture certain
aspects of global information, we note that, following the
RoIPooling operation, each object’s feature vector is pro-
cessed individually. To enhance the overall contextual un-
derstanding across objects, we gather the feature vectors of
all objects and process them through a Graph Attention Net-
work [3]. This approach allows us to generate a unified and
spatially consistent estimation considering the relationships
between objects within the scene.

4. Experimental Results
Dataset The dataset used for evaluation is a subset of the
MOTSynth dataset [5], a large synthetic dataset for pedes-

Backbone δ<1.25↑ Abs Rel↓ RMSE↓ ALP@1m↑
DINO ViT-S/8 0.259 0.475 13.430 0.066
ResNet34 0.457 0.232 6.726 0.118
VGG16 0.527 0.202 6.414 0.158
ResNet34-FPN 0.661 0.191 6.369 0.248

Table 1. Comparison of different backbones.

trian detection, tracking, and segmentation in an urban en-
vironment. All video sequences come along with bounding
boxes and the distance from the camera of each person ap-
pearing in the video.

4.1. Experimental Setup

Feature Extractor In their paper, Zhu et al. [24] used
ResNet [11] as a feature extractor. In this first experiment,
we investigate the performance of various backbones. The
tested feature extractors are the following:

• The widely adopted convolutional backbones
VGG16 [20] and ResNet [11].

• An FPN [16] variant of ResNet to exploit the higher
resolution of the feature map.

• The Transformer-based backbone DINO-ViT [1].

Metrics We rely on standard metrics of per-object dis-
tance estimation [4, 6, 17, 19, 24], such as the τ -Accuracy
(δτ ) [14] (i.e., the maximum allowed relative error), the Av-
erage Localization Precision (ALPτ ) [2, 23] (i.e., the mean
average error in true distance range) and classical error dis-
tances [24]: absolute relative error (Abs. Rel.), square rel-
ative error (Squa. Rel.), root mean squared error in linear
and logarithmic space (RMSE and RMSElog), and average
localization error (ALE) [2]. To refer the reader to the cited
works for a deeper explanation of such metrics.

Experimental Setting We train each model for 10 epochs
with a fixed batch size and learning rate. We use Cosine
Annealing Learning Rate scheduler, starting from 10−4. We
employ the AdamW optimizer. We use the MediaPipe [18]
Pose Estimator to predict the poses of detected people.

4.2. Quantitative Comparison

Backbone From the experiments reported in Table 1, the
DINO feature extractor seems unable to return useful fea-
tures, causing a considerable decrease in performance. We
argue that this is due to the size of the DINO model, which
would require more training and data to learn significant
patterns.

Conversely, traditional convolutional backbones yield
notably superior results, with the FPN variant of ResNet
standing out as the top performer. This substantial enhance-
ment compared to the standard ResNet can be attributed to



HPE δ<1.25↑ Abs Rel↓ RMSE↓ ALP@1m↑
✗ 0.661 0.191 6.369 0.248
✓ 0.683 0.182 6.059 0.282

Table 2. Contribute of the keypoints features with the ResNet34-
FPN backbone.

RoI Op δ<1.25↑ Abs Rel↓ RMSE↓ ALP@1m↑
Pooling 0.661 0.191 6.369 0.248
Align 0.688 0.178 6.320 0.272

Table 3. Results with RoiPool and RoIAlign with the ResNet34-
FPN backbone.

GAT δ<1.25↑ Abs Rel↓ RMSE↓ ALP@1m↑
✗ 0.661 0.191 6.369 0.248
✓ 0.699 0.176 4.665 0.290

Table 4. Contribute of the GATv2 for the Global Context Encoding
with the ResNet34-FPN backbone.

the ability of the FPN branch to produce a higher-resolution
feature map. Consequently, when the RoIPool operation is
applied, the selected features exhibit a finer level of detail.

HPE Contribute In Table 2, we present the results ob-
tained by incorporating keypoints distance features into our
architecture. Notably, we observe a performance improve-
ment when using such an additional signal.

The improved performance can be attributed to using
keypoints distance features, which offer a more comprehen-
sive representation of the human pose within our model. By
incorporating these features, our architecture gains access
to valuable spatial information, allowing it to make more
precise predictions about the absolute distance of a person.

Per-object feature pooling through RoIAlign We pro-
pose to exploit RoIAlign instead of RoIPool since it ad-
dresses the issue of spatial misalignment more effectively.
Indeed, RoIPool discretizes regions of interest into a fixed
grid and uses max-pooling, which can lead to inaccuracies
when regions do not align perfectly with the grid.

On the contrary, RoIAlign avoids misalignment by using
the more accurate bilinear interpolation that produces fea-
tures at the same level of granularity as the bounding box
coordinates corresponding to the region of interest. Such a
sub-pixel accuracy results in a more detailed and accurate
representation of objects within the region.

We report the results of such a comparison in Table 3.

GATv2 for Global Context Encoding In the architecture
proposed by Zhu et al. [24], pedestrians are represented in-
dividually through feature vectors derived from dense fea-

tures extracted by the visual feature extractor. These indi-
vidual feature vectors are subsequently fed directly into the
regressor head. However, to leverage the potential benefits
of interconnecting the feature vectors of different pedestri-
ans, which can enhance distance regression, we implement
a Graph Attention Network [22] (GAT) as a means to es-
tablish meaningful relationships between each pedestrian’s
information and that of others within the scene.

The GAT excels at capturing complex relationships and
dependencies in graph-structured data. What sets the GATs
apart from the GCNs [13] is their attention mechanism,
which assigns different attention weights to neighboring
nodes when aggregating information. This attention mech-
anism allows GATs to dynamically weigh the contribu-
tions of neighboring nodes during message-passing, en-
abling them to adaptively focus on the most relevant nodes
for each node in the graph.

In particular, we employ the GATv2 architecture pro-
posed by Brody et al. [3]. In Table 4, we report the eval-
uation enhanced using the GATv2. The results prove the
relevance of exploiting the relationships within the features
extracted for each pedestrian to improve the distance esti-
mation performance.

5. Conclusion
In this report, we explored some architectural adapta-

tions for distance estimation on the MOTSynth dataset,
starting from the architecture proposed by Zhu et al. [24].

We evaluated several feature extractors, discovering the
superiority of the convolutional-based backbones compared
with a DINO-based backbone. Moreover, we embodied the
information about the pose of the detected subjects by iden-
tifying their keypoints and calculating a feature vector rep-
resenting the distances between connected joints. Including
this information in the classification process leads to per-
formance improvements, highlighting the relevance of these
features in the distance estimation process.

Finally, we argue that combining such proposed modules
could lead to an even more significant performance boost,
which we could not empirically demonstrate due to time
constraints.
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