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Figure 1: NeRF Reconstructions Comparison - Original poses are displayed on the left, illustrating the
standard structure. The middle shows results from distorted poses, revealing apparent anomalies. The
right demonstrates our method's refinement of distorted poses, yielding significantly improved coherence
and structure.

INTRODUCTION
The introduction of Neural Radiance Fields (NeRFs) has provided a significant push in synthesising novel
views of complex scenes, representing them as continuous functions in a multi-dimensional
colour-geometry space [1].

This study explores and addresses the inherent challenges Neural Radiance Fields (NeRFs) face in
rendering high-fidelity 3D scene reconstructions, explicitly focusing on artefacts induced by noisy camera
poses. We propose an approach aimed at pre-processing and refining camera poses before training NeRF
models, targeting the mitigation of such artefacts and enhancing the quality of reconstructions. A recent
method, SPARF [4], refines poses by projecting key points in 3D and reprojecting them in 2D at train time.
Our methodology circumvents this by adding an optimisation process during the pre-processing stage,
allowing for universal applicability across various NeRF architectures. The anticipated outcome is a
reduction in artefacts and inconsistencies in the reconstructed scenes, enabling more accurate and reliable
renderings. This project, while minimally put together as a preliminary study, holds the potential to
contribute to the development of more precise 3D modelling and rendering techniques.

METHOD
In an ideal world, we work under the assumption that we can generate sets of corresponding pixels when
provided with an image pair. According to the fundamentals of multi-view geometry, it is a requirement
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that both of these pixels must map back to the identical 3D point within the world coordinate system
(Figure 2, left). When we introduce noise on the poses, this assumption becomes invalid, creating
inconsistencies in the projection into the real world (Figure 2, centre). In this scenario, our method is
composed of four different steps.

Keypoint estimation: To perform the 3D projection, it is first necessary to obtain correspondences
between images, and this can be achieved by relying on a pre-trained dense correspondence network [6] to
extract matches between the training views.

Depth estimation: A depth estimation network is vital in determining the depth Dkv of each keypoint KPv
of every view V and extracting their respective 3D coordinates. An affordable choice for this task is
DINOV2, which has demonstrated state-of-the-art performance in monocular depth estimation.

3D projection: Knowing the RTvmatrix for a view and the intrinsic values K of the camera. For each
keypoint identified within a view, it is projected into 3D space using the following formula:

3Dkp = (KPv * K^-1) * Dkv * RTv

2D reprojection: Acknowledging the potential imperfections in-depth estimation and the difficulty for the
architecture to precisely locate the correct points, our proposal involves reprojecting keypoints from their
3D positions into another view. Subsequently, we compute the distance between the reprojected 2D values.
In the context of two image pairs, V1 and V2, the keypoints identified in these images are subsequently
reprojected into the 2D view of the other image(Figure 2, right), thereby determining a distance that serves
as a valuable loss metric.

Figure 2: (a) Keypoint 3D projection with ground truth camera poses, (b) 3D projection with noisy camera
poses, (c) 3D projection with optimised camera poses and reprojection to 2D.

EXPERIMENTAL RESULTS
We employ the CarPatch dataset [3] for our experiments—a synthetic benchmark specialising in vehicles
that include images, intrinsic and extrinsic camera parameters, and depth maps. The average rotation and
translation errors between the optimised poses and the ground truth are reported to underline the
effectiveness of pose correction in our approach. Additionally, a qualitative comparison is performed for
view synthesis.
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Our initial findings, derived from the ground truth keypoints and depth maps, aim to elucidate the
potential ramifications on subsequent NeRF reconstructions. Instant-NGP [2] models are trained utilising
nerfstudio [5] over 30k iterations, a process completing in approximately 30 minutes on an NVIDIA
RTX6000. For the sake of experimentation, intentional distortions were introduced; an average noise of
0.25m in translation and 5 degrees in rotation. The results of the pose optimization are depicted in Table 1,
illustrating the efficacy of our pre-processing method in rectifying the noisy poses.

Translation Error Rotation Error

Noisy poses 0.24m 4.53°

Cleaned poses 0.21m 4.11°

Table 1: Comparative Analysis of Average Errors

To quantify the influence of the refined poses on NeRF representation, an ablation study was conducted,
with initial training based on clean poses serving as the baseline. Subsequent introduction of random noise
to the camera’s extrinsic parameters led to a discernible decline in performance, rectified by the application
of our refined methodology, resulting in enhanced NeRF output reconstruction.

Figure 1 illustrates the disparities in novel view rendering between models trained with noisy and refined
poses. The former struggles with learning accurate geometries, yielding degenerate forms, while the latter,
fortified with refined poses, exhibits robustness and precision in rendering accurate views.

FINAL THOUGHTS
We introduce ClearView, a pre-processing methodology designed to rectify inaccuracies in camera
estimates by enforcing multi-view consistency through key points and depth maps. This results in refined
camera poses and improved NeRF reconstructions. Unlike methods such as SPARF, which optimise poses
during training, our refinement process during data pre-processing is universally applicable to any existing
NeRF implementation, eliminating the need for additional code adaptations. The initial results
demonstrate promise, and subsequent studies will explore important metrics including PSNR and SSIM to
quantify improvements.
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