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1. Introduction
Contrastive pre-training of Vision-Language Models

(VLMs) e.g. CLIP [7] have demonstrated excellent perfor-
mance over a variety of tasks such as zero-shot transferabil-
ity [7], text-to-image generation [8] etc. However, the major
bottleneck in training such models is the computational bur-
den and energy consumption involved. For instance, CLIP
trained on 400 million data for 32 epochs requires thousands
of GPU-days [3] creating a need for more efficient training
strategies for VLMs. In this direction, taking inspiration
from the sparse computation of Masked Autoencoder [2],
the authors of FLIP [4] proposed a method for randomly
dropping large portions of image patches while pretraining
CLIP models. This enables FLIP to significantly outper-
form open-source implementation of CLIP (OpenCLIP [3]),
while offering faster training speed and noticeable perfor-
mance over variety of downstream tasks.

However, the main disadvantage of FLIP is that its patch
selection mechanism randomly discards image patches
without accounting for the information present in them.
This motivates us to investigate the following two research
question:

1. Does FLIP’s patch selection mechanism need to fo-
cus on choosing the most relevant image patches
and disregarding the less important ones?

2. What is the right way to estimate the relevance (im-
portance) of image patches in terms of quality of
information contained in them?

In this work, we investigate the above research questions
by addressing limitations of random patch selection method
in FLIP and further present a collection of proof-of-concept
patch selection strategies. In particular, we propose mul-
tiple strategies such as checkerboard pattern, average least
similarity, adaptive patch selection based on attention map

of DINOv2 [6], and self-distillation from CLIP. We pro-
vide zero-shot classification results on ImageNet-1K [1] un-
der variety of training settings (Sec. 2). We also show the
performance of CLIP and FLIP when trained from scratch
on CC3M [10] dataset, due to unavailability of the larger
LAION-400M [9] dataset for our experiments. Our find-
ings have yielded the following important observations:

1. Naive patch selection strategies such as checkerboard
pattern and average least similarity achieve similar re-
sults to vanilla FLIP trained with random masking
strategy.

2. Patches selected based on attention maps extracted
from DINOv2 [6] outperform naive approaches and
FLIP, indicating the effectiveness of our propose adap-
tive patch selection strategy.

3. The patches selected through self-distillation from
CLIP using KL divergence based loss (end-to-end
pipeline) performs marginally better than random
patch selection strategy, which further validates the
proficiency of our approach.

2. Method
In our proposed framework, shown in Fig. 1, we first

introduce heuristic methods such as checkerboard and av-
erage least similarity. Then, we propose adaptive patch se-
lectors that exploit the attention map of DINOv2 [6]. How-
ever, due to the computational requirement of DINOv2, we
also propose a self-distillation approach that leverages the
holistic similarity available in CLIP.

2.1. Checkerboard pattern

This method alternates between selecting odd and even
patches in a checkerboard-like pattern, ensuring uniform
pixel distribution for enhanced model robustness against lo-
cal variations.
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Figure 1. Illustration of our proposed framework. The Selector model S identifies the most informative patches from the input images.
These selected patches are subsequently fed into CLIP’s image encoder EI for pre-training for image-text semantic alignment within the
latent space.

2.2. Average least similarity

In Fig. 2a, we project the input image into D-
dimensional patches and calculate the cosine similarity be-
tween all patch pairs. We then retain patches with the lowest
average similarity, emphasizing those with richer and less
redundant information, fostering effective selection for the
transformer model.

2.3. Learning from DINOv2’s attention map

As shown in Fig. 2b, our method’s patch selector model,
denoted as S, consists of three components: a pre-trained
DINOv2 image encoder E serving as an attention-based
patch relevance estimator, an attention aggregator, and a se-
lection strategy. In particular, when provided with an input
image I, S first extracts attention maps from the [CLS]
token produced by the final layer of E . Subsequently, S
combines the various attention maps generated by different
attention heads, each focusing on distinct representative as-
pects of objects. Ultimately, S utilizes a multinomial prob-
ability distribution derived from the attention scores to ran-
domly choose 50% of the visual tokens.

The areas of focus of attention heads should correspond
to the way humans perceive objects in images and, by ex-
tension, nouns in text captions. We investigate three differ-
ent approaches for combining attention maps generated by
these heads: entropy-based aggregation, mean-based aggre-
gation, and sum-based aggregation. In entropy-based ag-
gregation, we compute a probability distribution of atten-
tion scores for each head. Low entropy signifies agreement
among heads, often indicating the background, while higher
entropy suggests uncertainty among heads, highlighting po-
tentially informative regions with object-specific features.
In the mean-based aggregation, we calculate the average of
the values of the attention heads, while in the sum-based
aggregation, we sum the values of the attention heads.

2.4. Self-distillation from CLIP

A straightforward approach to patch selection is to iden-
tify and prioritize the most pertinent patches within the in-
put texts. Leveraging the holistic similarity offered by a pre-
trained CLIP model between images and texts, we can ex-
tend this similarity analysis to a more granular, patch-level
perspective, using it to guide our patch selection process.

In detail, for the patch tokens in each image, we employ
a 2-layer transformer to compute their importance scores.
Subsequently, we select 50% patch tokens (denote the to-
ken number as K = 24) based on the normalized im-
portance scores Spred ∈ RK . These selected patches
are then input into a Vision Transformer to generate the
image representation, following a similar methodology as
FLIP. The importance scores are supervised by comparing
the similarity of the CLIP text embeddings with the patch
embeddings, which is denoted as Sclip ∈ RK . We use
a standard KL divergence as a loss term, i.e., Ldistill =
KLdist(Spred, Sclip). This loss term serves as a means to
refine our selector’s ability to select patches that are most
congruent with the textual context, promoting a more ro-
bust and contextually relevant image representation.

3. Experiments
All experiments were conducted on the CC3M [10]

dataset, consisting of 3 million pairs of image-text collected
from the web followed by a series of filters. The batch size
used for the experiments is 16k, to match the implementa-
tion used by FLIP [4], with the sole exception of DINO,
where the batch size is 4k. This was possible by fully uti-
lizing 4 nodes and 16 GPUs of the Leonardo HPC. We con-
sider the implementation of CLIP and FLIP, where image
patches are dropped randomly, as baselines. The latter is
evaluated after 20 and 200 epochs, in order to assess the
trend during training. Results exploiting the heuristics for
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Figure 2. Overview of the various patch selection strategies: (a)
Average Least Similarity (b) Attention Map-Based (DINOv2) (c)
Learned Selector via Self-Distillation Loss. Please refer to Sec. 2
for additional details.

the patches filter obtain comparable results with the base-
line. Instead, results with DINO’s feature-based approaches
have a performance improvement and reach 8% in zero-shot
on Imagenet-1k.

Due to the small amount of data used for training, we
also evaluated a model with a smaller number of parameters
(ViT-S/32). The results of the models of different sizes are
comparable with each other.

4. Discussion

The results clearly demonstrate that CC3M does not en-
able either CLIP or FLIP (Random) to attain competitive
performance comparable to their training on LAION-400M
dataset. This behavior stems from the restricted size of the

Table 1. Zero-shot accuracy on ImageNet-1k using CLIP pre-
trained on CC3M. Our attention maps are based on DinoV2. The
Random patch selection strategy we used is FLIP. The “Baseline”
denotes vanilla CLIP, where all patches were utilized.

Visual Backbone Patch selection strategy # Epochs Top 1 (%) Top 5 (%)
ViT-B 32 - (Baseline) 15 5.4 14.5
ViT-B 32 Random 20 4.8 (↓ 0.6) 13.1 (↓ 1.4)
ViT-B 32 Random 200 5.7 (↑ 0.3) 14.8 (↑ 0.3)
ViT-S 32 Random 200 4.7 (↓ 0.7) 12.7 (↓ 1.8)
ViT-B 32 Checkerboard 200 5.4 (≈ 0.0) 13.7 (↓ 0.8)
ViT-B 32 Avg. least similarity 200 5.6 (↑ 0.2) 14.2 (↓ 0.3)
ViT-B 32 Self distillation loss 20 5.2 (↓ 0.2) 14.3 (↓ 0.2)
ViT-B 32 Self distillation loss 50 5.6 (↑ 0.2) 14.3 (↓ 0.2)
ViT-B 32 Attention Map (Sum) 11 8.3 (↑ 2.9) 20.2 (↑ 5.7)
ViT-B 32 Attention Map (Mean) 14 8.3 (↑ 2.9) 20.3 (↑ 5.8)
ViT-B 32 Attention Map (Entropy) 15 8.5 (↑ 3.1) 20.5 (↑ 6.0)

CC3M dataset and the project’s time constraints. Addition-
ally, there are no pretrained checkpoints available for CLIP
and FLIP models finetuned on CC3M data. Moreover, be-
cause of the substantial differences in training iterations per
epoch, we have chosen not to employ a checkpoint pre-
trained on the LAION-400M dataset, which is currently un-
available on the cluster.

In our evaluation, we observe that heuristic patch selec-
tion techniques, such as the checkerboard pattern and av-
erage least similarity, achieve results on par with a conven-
tional FLIP model trained using a random masking strategy.
However, when patches are chosen based on attention maps
extracted from DINOv2 [6], we obtain a remarkable im-
provement, surpassing both naive methods and FLIP. This
outcome highlights the efficacy of our proposed adaptive
patch selection strategy. Furthermore, patches selected via
self-distillation from CLIP, utilizing a KL divergence-based
loss in an end-to-end pipeline, also outperform a random
patch selection strategy. This finding underscores our hy-
pothesis that FLIP may lead to the loss of important details
when patches are randomly sampled.

In future work, we plan to further experiment with train-
ing strategy of the self-distillation pipeline such as training
CLIP without any patch drop for initial few epochs and then
incorporate self-distillation loss to guide the patch selection
process. Also an interesting experiment would to incorpo-
rate slot attention [5] in the patch selection mechanism. We
hope our work can inspire further research in this direction.
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