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ABSTRACT

Histopathological image analysis is a critical area of research with the potential to aid pathologists in
faster and more accurate diagnosis. However, Whole-Slide Images (WSIs) present challenges for
deep learning frameworks due to their large size and lack of pixel-level annotations. Multi-Instance
Learning (MIL) is a popular approach that can be employed for handling WSIs, treating each slide as
a bag composed of multiple patches or instances. DAS-MIL is a recent solution that feeds a MIL
model with augmented features from graph attention layers. In this paper, after a short introduction
to the problem, we leverage Leonardo, the 4th supercomputer in the top500 leaderboard to explore
different variations on DAS-MIL, as well as a depiction of the features extracted by the dataset to
better understand the problem.
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1 Introduction

Deep neural networks have undeniably made substantial advancements in the realm of medical image analysis,
consistently pushing the boundaries of what is possible [1, 2]. These networks have achieved remarkable results in
diagnosing diseases, uncovering anomalies, and providing invaluable support to clinicians in their decision-making
processes. Nevertheless, a formidable challenge persists, particularly in the context of digital pathology: the precise
detection of minute anomalies, such as small malignant tissues, within vast and intricate images known as Whole-Slide
Images (WSIs) [3].

WSIs offer unprecedented opportunities for the preservation, sharing, and comprehensive examination of tissue
specimens, ushering in a new era for pathology. However, their size makes them impractical to be fed in a GPU for
standard deep learning architectures. Moreover, annotating WSIs at the pixel level demands extensive medical expertise
and is a labor-intensive and time-consuming endeavor [4]. Labels for WSIs are often available at higher levels of
granularity, such as the entire slide or patient level, making it challenging to pinpoint specific regions of interest within
these expansive images.

To leverage the capabilities of deep learning for the analysis of WSIs, researchers have resorted to breaking down WSIs
into smaller patches and utilizing them as input for neural networks [5]. While this patch-based approach is practical for
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Figure 1: Visualization of the different kinds of resolutions available in a WSI.

handling a vast amount of data, having a single annotation for a whole set of patches of the same WSI makes training
non-trivial and requires methods tailored for this specific task.

Multi-instance Learning (MIL) has emerged as a promising solution [6]. In MIL treats a WSI as a “bag” composed of
numerous image patches, or “instances” and leverages attention mechanisms to weigh the importance of these instances
in the overall classification decision. Multi-scale approaches appear to be a promising strategy to exploit the hierarchical
pyramidal structure inherent in WSIs. [7] proposed a Graph-based multi-scale MIL framework named DAS-MIL. With
the graph structures their work aims to improve information flow across multiple scales while enforcing latent space
alignment with a Knowledge distillation scheme.

The primary scope of this project is to employ the supercomputer Leonardo [8], thus we dedicated much effort to
improving the efficiency of the original pipeline and making it suitable to be scaled across multiple GPUs and multiple
nodes.

Finally, this work proposes improvements to the information flow and encoding of DAS-MIL [7]. Specifically,
the investigated variations concern Graph Attention Networks V2 (GATv2), which recently demonstrated superior
performance w.r.t. its previous version, and graph connectivity based on K-nearest neighbors(k-NN) in the feature
space, to emphasize different long-range relationships in the graph.

While this paper does not focus on achieving state-of-the-art results, it is dedicated to refining and optimizing existing
techniques to better address the complex problem of analyzing WSIs and detecting subtle anomalies within them.

2 Datasets

Two datasets have been employed in all the experiments: Camelyon16 and TCGA Lung. The former has been created
with the purpose of automatic detection of metastases in Hematoxylin and Eosin (H&E) stained whole-slide images
of lymph node sections, as part of the homonymous challenge held at the International Symposium on Biomedical
Imaging (ISBI) in 2016 [9]. The dataset comprises a total of 398 WSIs, out of which 128 are designated as “official test
set”. The images were acquired through two slide scanners, namely RUMC and UMCU, respectively equipped with
×20 and ×40 objective lenses. The specimen-level pixel sizes are comparable, i.e., 0.243µm× 0.243µm for RUMC
and 0.226µm× 0.226µm for UMCU. From the official training set, a subset of 22 WSIs has been extracted to serve as
a validation set.

The second dataset, publicly available on the GDC Data Transfer Portal, comprises two sub-types of cancer: Lung
Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC), counting 541 and 513 WSIs respectively. In
this case, 43 WSIs of the training set have been extracted to serve as a validation set.

Both datasets had already been pre-processed using DINO [10] to embed each patch of each resolution to a lower-
dimensional vector of size 384 for TCGA Lung and 256 for Camelyon16.

2.1 Pre-processing

Each slide has been cropped using the CLAM framework [11], a state-of-the-art tool for selecting tissue patches and
removing the WSI background. In particular, each slide has been processed at thumbnail level through a combination
of Otsu thresholding [12] and connected components analysis [13], to obtain the tissue contours. After that, each
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Figure 2: t-SNE visualizations of DINO embeddings, suggest the distinguishability of lesions from healthy tissue. The
leftmost visualization represents the original dataset distribution, where orange dots correspond to patches that are
part of a positive slide, and in blue instances which are part of a negative slide. Clusters with a mixture of blue and
orange dots are due to the presence of negative patches within positive slides. In the second image, the dots with the
same colors are obtained by the same slide. This highlights the effective presence of some clusters which hints a good
separation between healthy and pathological patches.

256× 256 patch within the selected contours is extracted without overlapping at 20× scale resolution (5× and 20× in
the multi-scale setting).

Finally, instance embeddings are obtained through a ViT model trained in a self-supervised fashion by means of the
DINO paradigm [14]. The training is performed separately on each dataset/resolution. The model has been trained for a
week with two NVIDIA GeForce GTX 2080 Ti GPUs using the default parameters proposed by the authors.

3 Feature Visualization

We embarked on the creation of T-SNE visualizations for DINO embeddings with the intention of evaluating the
distinguishability between lesions and healthy tissue. To maintain a manageable dataset, we opted to work with a
representative 1% subset of the original training data.

To gain deeper insights into the separability of healthy and pathological patches, we conducted a random sampling
procedure, ensuring an equal representation of both categories. The results, as illustrated in Figure 2, demonstrate that
the DINO embeddings facilitate a clear separation between healthy tissue and those featuring tumors. This finding
underscores the effectiveness of the embeddings in distinguishing between these two classes. Furthermore, we extended
our analysis to WSI, as depicted on the right of Fig. 2. Here, we aimed to ascertain the extent to which the DINO
embeddings enable the discrimination of slides on a broader scale. These visualizations collectively offer valuable
insights into the differentiability of various tissue types within the dataset.

4 Proposed Modifications

4.1 Graph Attention Network

Graph Attention Networks (GATs) stand out as one of the most widely embraced Graph Neural Network (GNN)
architectures, acclaimed as the forefront choice for graph-based representation learning. Within the framework of
GAT, each node conducts an attention process toward its neighboring nodes, employing its own representation as
the query. Brody et al. [15] demonstrated that GAT employs a rather restricted form of attention. Specifically, the
ranking of attention scores remains unaltered regardless of the query node. To overcome this constraint, they presented
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a straightforward remedy by altering the sequence of operations thus introducing GATv2. They demonstrated that this
dynamic graph attention variant surpasses GAT in terms of expressive power, enabling it to address a broader range of
graph problems. For this reason, we decided to replace GAT with GATv2 in DAS-MIL, to understand if it could be
suitable also for our specific scenario.

4.2 k-NN feature connectivity

Bontempo et al. [7] employed a Pyramidal Graph Neural Network (PGNN) structure in the original work, Figure 1.
Instead of using all the available resolution levels, only the last two were employed by them, and we also followed
this strategy to reduce the number of samples in the training set. At each one of the two image scales, they establish
an 8-connectivity of patches based on adjacency. Two Graph ATtention layers (GAT), G1 and G2, one for each scale,
process DINO features on the 8-connectivity graphs. In the end, a new GAT layer G3 processes the features produced
by G1 and G2 on a global graph that merges the nodes from the two scales according to a relation "part of", Fig. 3 (a).

Figure 3: (a): The graph structure of the original work. Layers G1 and G2 work on the 8-connectivity graphs of the two
scales, G3 matches the two scales according to the relation "part of". (b): Our local-to-global graph structure. G1 and G2

are the same, and G3 works on a scale-agnostic 4-nearest-neighbor graph on the space of the features.

Cancer is sometimes multifocal, meaning that tumors can grow non-locally as separated spots. In this work, we consider
graph connections in K-Nearest-Neighbors of feature vectors along with the original 8-connectivity graph. A KNN
graph edge links each patch node with the k nodes having the lower Euclidean distance of feature vectors. This approach
makes the learning model aware both of local patch adjacency and non-local patch similarity. We do not change the
attention layers G1 and G2, while we rethink G3 by removing the “part of” relation and adopting a scale-agnostic and
global KNN graph, as depicted in Figure 3 (b). In the experiments, the number of neighbors k has been set to 4.

5 Experimental Evaluation

5.1 Method

As the main topic of the school, as well as the scope of the project, regards “Large-Scale AI”, the first effort was about
optimization and parallelization of the whole pipeline. The original code supported a only batch size of 1, a single GPU,
and a single node. After our additions, we managed to increase the batch size, the GPU number, and also the number
of concurrent nodes, thus reducing by a lot the time required to train the model. The original work employed the test
set also as a validation set. This approach could lead to biases, and most importantly unfairness when we compare
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the metrics obtained as a high value might be just due to randomness and not due to a real improvement of the model.
Moreover, we decided to perform 3 runs for each experiment, instead of 1 as in the original paper, to report the mean
and the standard deviation of the results, in order to have more robust statistical support to our statements. To gain
insight into the distinguishability between malignant tissue and healthy tissue features extracted by DINO, exploratory
t-SNE visualizations for patch feature embeddings have been performed and depicted in Fig. 2.

The validation accuracy has been used to identify the best-performing model. This model is then evaluated on the test
set and the accuracies and AUC are reported. In the Tab. 1 all the metrics obtained using the proposed methodologies,
as well as a baseline value, are reported.

5.2 Results and Discussions

Table 1: Performance comparison on Camelyon16 and TCGA Lung dataset.

Camelyon16 TCGA Lung

Model Accuracy AUC Accuracy AUC

Baseline 0.906± 0.030 0.907±0.033 0.874± 0.027 0.950±0.010
GATv2 0.896±0.007 0.937± 0.040 0.849±0.050 0.955± 0.009
KNN Graph 0.870±0.010 0.933±0.002 0.837±0.010 0.918±0.007

Regarding the findings reported in the original paper [7], our baseline experiments scored lower on Accuracy and
AUC. However, our study employs a more robust methodology for model evaluation and training, which could partially
explain the observed differences. Although parallel computing can reduce performance, we don’t expect this to be the
main contributor. Interestingly, all models have better accuracy performance on Camelyon16 than TCGA Lung. With
an AUC of 0.937± 0004 and 0.955± 0009, GATv2 outperforms the other models for Camelyon16 and TCGA Lung,
respectively.

The k-NN graph approach does not show any improvement. The reason for this can be attributed to the low dimensional
encoding with 4 connectivity. Intuitively, this approach suits the DAS framework, especially for the high scale graph:
for k-NN-based feature connectivity, similar features tend to originate from the same region in the high-scale image.
Consequently, the structural differences between a spatial connectivity graph (low-scale) and a feature k-NN connectivity
graph (high-scale) are likely to be relatively minimal. This similarity translates into a comparable information flow
behavior when dealing with 2 different connectivity-based graphs. Therefore, the use of KD loss is still applicable to
encourage the agreement between information in different scales. In conclusion, we recommend further investigation
on higher connective graphs, at different places within the network.

6 Conclusions

In summary, as deep neural networks continue to revolutionize medical image analysis, our work focuses on fine-tuning
and enhancing existing methods rather than claiming state-of-the-art results. Our proposed modifications, including the
use of graph layers, the creation of KNN edges, and the scaling of the whole pipeline aim to make strides in improving
the efficiency of WSI classification models, ultimately contributing to the ongoing advancement of digital pathology.
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