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How it started...

Laptev & Lindeberg, ICCV 2003
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Howit’s going...

Du Tran et al., ICCV 2015

w/ Jiaojiao Zhao et al., CVPR 2022
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w/ Kirill Gavrilyuk et al., CVPR 2020

w/ Shuo Chen, Zenglin Shi & Pascal Mettes, ICCV 2021
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w/ Hazel Doughty, CVPR 2022

Action: peel

How is the action done?
evenly, backwards, carefully, quickly, properly

Dual-use concerns & responsibility
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Powerful yetirresponsible

* Mis-alignment with human values

* Hallucination

* Lacking adaptability to social dynamics and cultural context
* Limited transparency and explainability

* Non-inclusive and often closed access

* Unsustainable energy footprint

* Lacking robustness
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What assumption do all these works have in
common at training time?

Action: peel

How is the action done?
evenly, backwards, carefully, quickly, properly
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Empirical risk minimization and the 1.1.d. assumption

Empirical risk minimization

Definition. Given a set of labeled data points S = ((z1,y1), ---, (n,Yn)), the
empirical risk of a predictor f : X — Y with respect to the sample S is defined as

Rslf] = > toss(£(), 1.

i.i.d. assumption

It is typically assumed that training, validation and test set are
independent and identically distributed.

17
Domain-invariant learning Meta-learning Source-domain augmentation
+ sample Label Space
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w/ Zehao Xiao et al., ICML 2021 w/ Yingjun Du et al., ICLR 2022 w/ Mengmeng Jing et al., ICCV 2023
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More 1s different

4 August 1972, Volume 177, Number 4047 SCIENCE

Philip Anderson crystallized the idea of emergence, arguing
that “at each level of complexity entirely new properties
appear” — that is, although, for example, chemistry is
subject to the laws of physics, we cannot infer the field of
chemistry from our knowledge of physics.

search which 1 think 1s as fundamental
in its nature as any other. That is, it
seems to me that one may array the
The reductionist hypothesis may still  planation of phenomena in terms of sciences roughly linearly in a hierarchy,
be a topic for controversy among phi- known funrd:;‘me:lald laws. As always, dis- according to the idea: The elementary
ori tinctions of this kind are not i iti N

losophers, but among the great majority ;" ypey are clear in most cases. Solid A ;f 2 obey the: laws. .oF
of_ active scientists I think it is accepted  seate physics, plasma physics, and perhaps S¢ience Y.

without question. The workings of our also biology are extensive. High energy

. ; : X : x Y

minds and bodies, and of all the ani- physics and a good part of nuclear physics | 5 rement. e

mate or inanimate matter of which we are intensive. There is always much less i . elementary particle

have any detailed knowledge, are as. intensive research going on than extensive. many-body physics physics .
4 . == Once new fundamental laws are discov- chemistry many-body physics

umed to be bv the same set " 1 a i i daui biology D L\
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This lecture

Looks into the generalization abilities of modern video Al
1. Video generalization by pre-training
2. Video generalization by adaptation

3. Video generalization at test-time

20
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1. Video generalization by pre-training

21
Supervised learning
Labeled
data
Neural Predict
Network Putting on a jacket
Putting on a
jacket
Depends on a manual labeling effort, which is costly, errorprone, and biased
22
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Self-supervised learning using a proxy task

_data

Unlabeled

Predict 90°
rotation

L

Rotate 90°

Predict 270°
rotation

Shared

Rotate 270° Parameters

Self-supervised learning exploits (imposed) regularities in the data to learn from.

23
Self-Supervision
LEeSA
el i 5
gﬂ! —_—
o T it
MR Model
R i
Ee=A
SANaE
MM
el
D
; = o
s = @
Model o o Labels
wWod 2 200 ) g5 &
e S
CIimbRopei BraidHair g
24

12



20/09/2023

Example proxy tasks

Temporally Correct order

S eEmamem

Shuffle and Learn, Mishra et. al., ECCV 2016 Video Clip Order Prediction, Xu et al., CVPR 2019

Temporally Incorrect order

25
A more advanced proxy task: contrastive learning
Uses Instance discrimination and enforces augmentation invariance.
Adaptation of image-based methods like MoCo, SimCLR, to video domain.
26
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Masked auto encoding transformers

VideoMAE masks random cuboids and reconstructs the missing one

Time

Downsampled video clip

Zhan Tong, Yibing Song, Jue Wang, Limin Wang. VideoMAE: Masked Autoencoders are Data-Efficient Learners for
Self-Supervised Video Pre-Training. In NeurlPS, 2022.

nm
Time Time % % Time
- [
be masking with an extremely high ratio - . - Target video clip
~ keeping masking Tokens wio [l % I%
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Problem: Video self-supervised learning evaluation

Pre-training
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Kinetics-400

Fine-tuning & Evaluation

_______________

_______________
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Problem: Video self-supervised learning evaluation

Pre-training and evaluation video too similar?

Pre-training Fine-tuning & Evaluation

——————————————— Kinetics-400 UCF-101 HMDB-51
Label overlap Label overlap Label ovelap
DO

> ,¢

awareness |

HMDB-51

What if downstream video task is different?
Airport, shopping mall, hospital, etc.

Kinetics-400

29
1.a How severe is benchmark-sensitivity?
Fida Mohammad Thoker Hazel Doughty Piyush Bagad Cees Snoek
University of Amsterdam University of Amsterdam University of Amsterdam University of Amsterdam
How Severe is Benchmark-Sensitivity in Video Self-Supervised Learning? In ECCV 2022.
30
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Proposed evaluation: four factors of sensitivity

Pre-trainin

Kinetics-400

31
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Proposed evaluation: four factors of sensitivity

Pre-trainin

1. Downstream domains

SS-v2 FineGym-99 UCF-101

I T o L D P -~ B

Kinetics-400

32
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SS-v2 FineGym-99 UCF-101

Kinetics-400

33

Proposed evaluation: four factors of sensitivity

1. Downstream domains

SS-v2 FineGym-99 UCF-101
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34
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Proposed evaluation: four factors of sensitivity

Pre-trainin

1. Downstream domains
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Action recognition  Action detection ~ Repetition counting

35

7 datasets / 6 tasks / 500 experiments

Considerable variety in video domain, the actions and tasks

Kinetics-400 UCF-101 FineGym Something’ Something EPIC
= s

Tasks: Action classification, Action detection, Repetition counting, Arrow of time prediction,
Spatio-temporal detection, Multi-label classification

36
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9 video self-supervised learners

Video MoCo

Contrastive Loss

MoCo

Contrastive Loss

Similarity

GDT RSPnet

TCLR

T Same speed label |

H |Different speed labels ©
1but different content | _but similar content
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All methods come with weights for a R(2+1)D-18 network pre-trained on Kinetics-400

37

Sensitivity factor I: Downstream domain

1. Downstream domains

FineGym-99 UCF-101

Pre-training

0 [ A Y
L

Kinetics 400

38
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Sensitivity factor I: Downstream domain

Downstream Domains

P .. Finetuning
re-training
UCF101 NTU60 Gym99 SSv2 EK 100

None 75.4 92.9 89.4  56.8 | 25.7
MoCo 83.5 93.4 90.6 57.0 | 264
SeLaVi 84.9 92.8 88.9 564 338
VideoMoCo 85.8 94.1 90.5 58.8  43.6
Pretext-Contrast ~ 86.6 93.9 90.3 57.0 343
RSPNet 88.5 93.9 91.3 594 427
AVID-CMA 89.3 94.0 90.6 | 53.8 299
CtP 89.8 94.3 92.2 60.2 428
TCLR 90.8 94.1 91.5 60.0 36.2
GDT 91.1 93.9 904 57.8 373
Supervised 94.1 93.9 91.8 61.0 47.7

Increasing domain shift

39
Sensitivity factor I: Downstream domain
Downstream Domains
Pre-training Finetuning
UCF101 | NTU60 Gym99 SSv2 EK 100
None 75.4 92.9 89.4 56.8 25.7
MoCo 83.5 93.4 90.6 57.0 26.4
SeLaVi 84.9 92.8 88.9 56.4 33.8
VideoMoCo 85.8 94.1 90.5 58.8 43.6
Pretext-Contrast 86.6 93.9 90.3 57.0 34.3
RSPNet 88.5 93.9 91.3 59.4 42.7
AVID-CMA 89.3 94.0 90.6 53.8 29.9
CtP 89.8 94.3 92.2 60.2 42.8
TCLR 90.8 94.1 91.5 60.0 36.2
GDT 91.1 93.9 90.4 57.8 37.3
Supervised 94.1 93.9 91.8 61.0 47.7
Increasing domain shift
40
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Sensitivity factor I: Downstream domain

Downstream Domains

P .. Finetuning
re-training

UCF101 | NTU60f Gym99 |SSv2 EK 100
None 75.4 92.9 89.4 |56.8 | 25.7
MoCo 83.5 93.4 90.6 |57.0 @ 264
SeLaVi 84.9 92.8 88.9 |56.4 338
VideoMoCo 85.8 94.1 90.5 58.8  43.6
Pretext-Contrast |  86.6 93.9 90.3 [57.0 343
RSPNet 88.5 93.9 91.3 594 427
AVID-CMA 89.3 94.0 90.6 §53.8 299
CtP 89.8 60.2  42.8
TCLR 90.8 94.1 91.5 160.0 36.2
GDT 91.1 93.9 904 |57.8 373
Supervised ﬁ 93.9 91.8 E

Increasing domain shift

Sensitivity factor I: Downstream domain

Downstream Domains

P .. Finetuning
re-training

UCF101 | NTU60] Gym99 |SSv2 EK 100
None 75.4 92.9 89.4 |56.8 | 25.7
MoCo 83.5 93.4 90.6 |57.0 | 26.4
SeLaVi 84.9 92.8 88.9 564  33.8
VideoMoCo 85.8 94.1 90.5 588  43.6
Pretext-Contrast 86.6 93.9 90.3 57.0 34.3
RSPNet 88.5 93.9 91.3 594 427
AVID-CMA 89.3 94.0 90.6 | 53.8 29.9
CtP 89.8 | 943 1922 602 428
TCLR 90.8 94.1 91,5 60.0 36.2

GDT 91.1 93.9 904 578 373
Supervised . 941 939 91.8 61.0 7.

Increasing domain shift
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Sensitivity factor I: Downstream domain

Downstream Domains

P .. Finetuning
re-training

UCF101 NTU60f Gym99 |SSv2| EK 100
None 75.4 92.9 89.4 |156.8] 25.7
MoCo 83.5 93.4 90.6 |57.0) 264
SeLaVi 84.9 92.8 88.9 |56.4] 338
VideoMoCo 85.8 94.1 90.5 58.8 1 43.6
Pretext-Contrast ~ 86.6 93.9 90.3 [57.01 343
RSPNet 88.5 93.9 91.3 594 427
AVID-CMA 89.3 94.0 90.6 §53.8f 299
CtP 89.8 60.2 | 42.8
TCLR 90.8 94.1 91.5 160.0} 36.2
GDT 91.1 93.9 90.4 |57.8) 373
Supervised 941 939 91.8 ﬁ i

Increasing domain shift

43
Sensitivity factor I: Downstream domain
Downstream Domains
Pre-training Finetuning
UCF101 NTU60] Gym99 [SSv2] EK 100 i
{ Downstream Domains Y
UCF-101 finetuning performance does not
generalize to other target domains.
GDT O1.1 93.0 90.4 |or.8] 303
Supervised 94.1 93.9 91.8 161.0] 477 |
Increasing domain shift
44
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Sensitivity factor I: Downstream domain

Downstream Domains

Pre-training

Finetuning

UCF101 NTU60 Gym99 SSv2 EK 100

None - 754 929 89.4 56.8 | 25.7
MoCo 83.5 93.4 90.6  57.0

SeLaVi 84.9 56.4 33.8
VideoMoCo 85.8 94.1 90.5 58.8 43.6
Pretext-Contrast 86.6 93.9 90.3 57.0 34.3
IRSPNet 88.5 93.9 91.3 594 427 |
AVID-CMA 3Y.9 4.l JU.0 29.9
CtP 89.8 60.2  42.8
TCLR 90.8 94.1 91.5 60.0 36.2
GDT 91.1 93.9 90.4 57.8 37.3
Supervised 941 939 91.8 61.0 47.7

Increasing domain shift

—
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Sensitivity factor I: Downstream domain
Downstream Domains
Pre-training Finetuning
UCF101 NTU60 Gym99 SSv2 EK 100
None 92.9 89.4 56.8 | 25,7
MoCo 83.5 93.4 90.6 57.0 = 264
SeLaVi 84.9 56.4 33.8
VideoMoCo 85.8 94.1 90.5  58.8 43.6
Pretext-Contrast 86.6 93.9 90.3 57.0 34.3
RSPNet 88.5 93.9 91.3 594 427
AVID-CMA 89.3 94.0 90.6 29.9
CtP 89.8 60.2 42.8
TCLR 90.8 94.1 91.5 60.0 36.2
GDT 91.1 93.9 90.4  57.8  37.3
| Supervised 941 939 91.8
Increasing domain shift
46
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Sensitivity factor II: Downstream samples

Pre-training

II. Downstream samples

n REEs IaEaEsEs " .
Blee daEE Soio-ice el st i
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Kinetics 400
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47
Sensitivity factor I1: Downstream samples
UCF-101
( ; Downstream Samples N
The gap and rank between methods
changing considerably across
sample sizes on each dataset.
0 . J
48
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Sensitivity factor 11 & IV: Downstream actions & tasks

( Downstream Actions \ Downstream Tasks
Most self-supervised UCF-101 action classification
methods are sensitive to performance is mildly
action granularity indicative on other tasks.
in downstream dataset.

\ J

49
Key takeaways
No clear winner, different methods standing out in different settings.
Supervised pre-training is dominant across all sensitivity factors.
Contrastive methods encouraging temporal distinctiveness transfer well.
We select a subset of experiments as the ‘SEVERE’ benchmark
50
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SEVERE benchmark: subset of our experiments

Existing SEVERE-benchmark
Pre-training Domains Samples Actions Tasks

UCF101  SS-v2 Gym-99 UCF (10°) Gym-99 (10°) FX-S1 UB-S1 UCF-RC Charades-MLC
None DO7EANN 568 | 894 [NMSANN 231 | [4500 840 [N028200 79N
MoCo 83.5 57.0  90.6 60.7 29.0 65.1  85.0
SeLaVi 84.9 56.4 | 88.9 69.2 28.3 0.171
VideoMoCo 85.8 588  90.5 658 | 192 | 604 0.171 10.5
Pretext-Contrast  86.6 570  90.3 62.7 25.9 65.8  86.2 0168 = 89
RSPNet 88.5 59.4 913 75.7 32.2 63.5  85.1
AVID-CMA ; 90.6 68.8 . 67.2 0.162
CtP 63.7 : 0.178
TCLR ! 5 i ! 11.1
GDT
Supervised

Enables future video self-supervised methods to evaluate generalization along 4 factors.

51

Problem of holistic contrastive learning

Uses Instance discrimination and enforces augmentation invariance.

“ Favours coarse-grained features F Limits generalizability
¥ Exploits background shortcut ¥ Motion-variety constraints cause data hunger

52
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Solution: add synthetic tubelets during pretraining

53
1.b Tubelet-contrastive self-supervision
Fida Mohammad Thoker Hazel Doughty Cees Snoek
University of Amsterdam University of Amsterdam University of Amsterdam
Tubelet-Contrastive Self-Supervision for Video-Efficient Generalization. In /CCV 2023.
54
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Step 0: Crop arandom patch from one clip

55

Step 1: Generate a tubelet

Tubelet
Genera tion

56
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Step 2: Add motion to the patch

Linear

Tubelet Tubelet ) .
M Motion — A Non-linear
TOl
’U

57
Step 3: Add motion complexity by transformations
®
58
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Step 3: Add motion complexity by transformations

Motion

Tubelet
Generatlon
0

Tubelet

— N —
Transformatlon

Scale

Rotation

Shear

59
Step 4: Overlay identical tubelet on two clips
7 Dy
60
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Step 5: Tubelet-contrastive learning

61
Examples of synthetically added tubelets
62
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Ablations

UCF (10%) Gym (10%) SSv2-Sub UB-S1

Video Contrast

Baseline 575 29.5 442 84.8

Tubelet Contrast

Tubelet Generation 48.2 28.2 40.1 84.1
[Tubelet Motion 63.0 45.6 475 903 }

Tubelet Transformation  65.5 48.0 479 90.9

Table 2: Tubelet-Contrastive Learning considerably out-
performs video  contrast on multiple downstream set-
tings. Tubelet motion and transformations are key.

63
UCF (10%) Gym (10%) SSv2-Sub UB-S1

Video Contrast

Baseline 57.5 29.5 442 84.8
Tubelet Contrast

Tubelet Generation 48.2 28.2 40.1 84.1
Tubelet Motion 63.0 45.6 475 90.3
Tubelet Transformation  65.5 48.0 479 90.9

Table 2: Tubelet-Contrastive Learning considerably out-
performs video  contrast on multiple downstream set-
tings. Tubelet motion and transformations are key.

Tubelet Motion UCF (103) Gym (10%) SSv2-Sub UB-S1

No motion 482 28.2 401 841
Linear 55.5 34.6 453 885
| Non-Linear 63.0 45.6 475 903 |

Table 3: Tubelet Motions. Learning from tubelets with
non-linear motion benefits multiple downstream settings.

64
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Ablations

UCF (10%) Gym (10%) SSv2-Sub UB-S1

Video Contrast

Baseline 575 29.5 442 84.8

Tubelet Contrast

Tubelet Generation 48.2 28.2 40.1 84.1
[Tubelet Motion 63.0 45.6 475 903

Tubelet Transformation  65.5 48.0 479 90.9

Table 2: Tubelet-Contrastive Learning considerably out-
performs video  contrast on multiple downstream set-
tings. Tubelet motion and transformations are key.

Tubelet Motion UCF (103) Gym (103) SSv2-Sub UB-S1

No motion 482 28.2 40.1 84.1
Linear 55.5 34.6 453 88.5
{ Non-Linear 63.0 45.6 47.5 90.3 }

Table 3: Tubelet Motions. Learning from tubelets with
non-linear motion benefits multiple downstream settings.

Transformation UCF (10%) Gym (10%) SSv2-Sub UB-SI

None 63.0 456 475 905
Scale 65.1 46.5 470 905
Shear 65.2 475 473 909
Rotation 65.5 48.0 479 909 |

Table 4: Tubelet Transformation. Adding motion patterns
to tubelet-contrastive learning through transformations im-
proves downstream performance. Best results for rotation.

65

Ablations

UCF (10%) Gym (10%) SSv2-Sub UB-S1

Video Contrast

Baseline 575 29.5 44.2 84.8

Tubelet Contrast

Tubelet Generation 48.2 28.2 40.1 84.1
["Dubelet Motion 63.0 45.6 475 903 ]

Tubelet Transformation  65.5 48.0 479 90.9

Table 2: Tubelet-Contrastive Learning considerably out-
performs video  contrast on multiple downstream set-
tings. Tubelet motion and transformations are key.

Tubelet Motion UCF (103) Gym (10%) SSv2-Sub UB-S1

No motion 482 28.2 401 841
Linear 55.5 34.6 453 885
| Non-Linear 63.0 45.6 475 903

Table 3: Tubelet Motions. Learning from tubelets with
non-linear motion benefits multiple downstream settings.

Transformation UCF (10%) Gym (10%) SSv2-Sub UB-SI

None 63.0 45.6 4715 905
Scale 65.1 46.5 470 905
Shear 65.2 475 473 909
Rotation 65.5 480 419 909 |

Table 4: Tubelet Transformation. Adding motion patterns
to tubelet-contrastive learning through transformations im-
proves downstream performance. Best results for rotation.

#Tubelets UCF (10%) Gym (10%) SSv2-Sub UB-S1

1 62.0 39.5 47.1 89.5
(2 65.5 48.0 479 909 |
3 66.5 46.0 475 909

Table 5: Number of Tubelets. Overlaying two tubelets in
positive pairs improves downstream performance.

66
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What does the model learn?

Video-contrastive learning

Proposed tubelet-contrastive learning

Without seeing any FineGym videos during training, our approach attends to motion

67

Adding synthetic motion improves data efficiency

70

Top-1

35

UCF (107 3)

65 1
60 1
55
50 -
45
40

A

0

25 50 75 100
Pretraining Data %

—— Tubelet-Contrastive Learning (This paper)

—=— Video-Contrastive Learning

—A&— From Scratch

68
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Key benefit: we need 4ix less video data

UCF (10"3) Gym (10°3) SSv2-Sub UB-S1 HMDB51
T 50 T 50 94 T 70

| f | | |

H 45 q 48 . 92 \ 65 |

f ]

i 40 ! 46 ' 90 : 0 ,/"": ¢ *
i i 44 ! 88 ' 1

! 35 H \ i 55 H

i i 42 i 86 i i

i : 1

30 A 40 84 50 '

]

' ' v

' ' ' '

| A 25 A 38 | 82 | Al 45 | A
' ' ' '

I I I I

>

0

20 36 80 40

25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Pretraining Data %

—e— Tubelet-Contrastive Learning (This paper) —— Video Contrastive Learning —4— From Scratch

Tubelets simulate a richer variety of fine-grained motion than present in the original video

69
Solid accuracy gain on UCF-101 and HMDB-51
R(2+1)D Backbone pretrained on Kinetics-400
Method Modality UCF101 HMDB51 Pre-training
Pace Prediction [76] RGB 77.1 36.6 =#%¥E=£
VideoMoCo [56] RGB 78.7 49.2 qﬂgEEgﬁ!
RSPNet [5¢] RGB 81.1 44.6 e La
SRTC [46] RGB 82.0 51.2 ﬁ.-ﬁE-
FAME [10] RGB 84.8 53.5 e e
MCN [45] RGB 84.8 54.5 _ﬂ_ﬂﬂﬂﬁﬂmm
AVID-CMA [52]  RGB+Audio  87.5 60.8 -
TCLR [9] RGB 88.2 60.0 E;Egsgz
- -
TE [31] RGB 88.2 62.2 [ H-HH
CtP [74] RGB 88.4 61.7 ;!gjaiEﬁi
. . E | p l\;
M0t10n_F1t [20] RGB+F10VY 88.9 614 HEP | Dsl
GDT [57] RGB+Audio 89.3 60.0 B BRaET
Ours w/ mini-Kinetics RGB 90.7 65.0 Cneties400
Ours w/ Kinetics RGB 91.0 64.1
70
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Generalizaton on SEVERE-benchmark

Pre-training

----------------------- B ELL

1. Downstream domains

SS-v2 FineGym-99 UCF-101

R
EFFAREEE

Action recognition Action detection  Repetition counting

Kinetics-400

71

Generalization on SEVERE-benchmark

[

Domains Samples Actions Tasks
Backbone SSv2 Gym99 UCF (10%) Gym (10%) FX-S1 UB-S1 UCF-RC| Charades Mean Rank]
SVT [61] ViT-B 59.2 62.3 83.9 18.5 354 5571 0.421 B5:5 51.0 8.9
VideoMAE [71] ViT-B 69.7 85.1 7.2 215 37.0 78.5 0.172 12.6 58.1 8.3
Supervised [72]  R(2+1)D-18 60.8 92.1 86.6 513 79.0 87.1 0.132 23.5 70.9 39
None RQ2+1)D-18 57.1 89.8 38.3 227% 46.6 82.3 0.217 7.9 529 11.6
SeLaVi [2] RQ2+1)D-18 56.2 88.9 69.0 a2 <1 80.9 0.162 8.4 58.6 11.0
MoCo [23] RQ2+1)D-18 57.1 90.7 60.4 30.9 65.0 84.5 0.208 8.3 59.5 9.1
VideoMoCo [56] R(2+1)D-18 59.0 90.3 65.4 20.6 513 83.9 0.185 10.5 58.6 Al
Pre-Contrast [69] R(2+1)D-18 56.9 90.5 64.6 215 66.1 86.1 0.164 8.9 60.5 9.0
AVID-CMA [51] R(@2+1)D-18 52.0 90.4 68.2 334 68.0 87.3 0.148 8.2 61.6 9.0
GDT [57] RQ2+1)D-18 58.0 90.5 78.4 45.6 66.0 83.4 0.123 8.5 64.8 8.6
RSPNet [5¢] RQ2+1)D-18 59.0 91.1 74.7 322 654 83.6 0.145 9.0 62.6 8.0
TCLR [¥] R(Q2+1)D-18 59.8 91.6 72.6 26.3 60.7 84.7 0.142 12.2 61.7 7.6
CtP [74] RQ2+1)D-18 59.6 92.0 61.0 N 79.1 88.8 0.178 9.6 63.2 5.6
Ours w/ mini-Kinetics R(2+1)D-18 59.4 9259 65.5 48.0 78.3 90.9 0.150 9.0 66.0 5.4
Ours w/ Kinetics R(2+1)D-18 60.2 92.8 65.7 47.0 80.1 91.0 0.150 10.3 66.5 4.1

1

Better generalization, even when using the 3x smaller Mini-Kinetics for pretraining.
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Key takeaways

Contrastive learning with synthetic tubelets provides:

Simple and effective self-supervised video representation learning.

Data-efficient pretraining with less unlabelled video data.

Better generalization to diverse video domains and fine-grained tasks.

73

2. Video generalization by adaptation

74
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Introduction

In this chapter we consider generalization by video representation
adaptation, without retrainining from scratch.

We will exploit the (often) multimodal nature of video to aid us in this
endeavour.

75
2.a Adaptation by video-language
a @
Piyush Bagad Makarand Tapaswi Cees Snoek
University of Amsterdam IIIT, Hyderabad University of Amsterdam
Test of Time: Instilling Video-Language Models with a Sense of Time. In CVPR 2023.
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The problem

® Foundation models: Language interface + a few (or no) training samples

sa b
E .II ———“A dog running”

[ What does this picture show? C)J

77

The problem

® Foundation models: Language interface + a few (or no) training samples

® Particularly attractive for videos given high cost

S
g .II —— “A kid eating ice-cream”
[ What does this video show? Q]

78
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The problem

® Do video foundation models truly understand time?

N>
g‘@ .II ——“A kid eating ice-cream”

[ What does this video show? Q}

79

The problem

® Do video foundation models truly understand time?

® Our idea for a “test of time”: ask questions that have temporal relations

S
g .II ——“False”
L The baby eats ice-cream before walking down hill? True or False? Q ‘

80
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The test of time

® The spatial image bias in current video benchmarks

® Synthetic benchmark

A red circle appears before a yellow circle A red circle appears

A yellow circle appears

e A yellow circle appears before a red circle
[ Control task

I Time order task

81

Existing models fail this test of time

® We pick a suite of seven openly available video-language models
® While excelling at the control task, they all fail at the time-order task

Testing time awareness in video-language models

M Control task M Time order task

Accuracy

BridgeFormer

CLIP2Video CenterCLIP  VideoCLIP Frozenin Time  VindLU

CLIP4Clip

82
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How to instil this sense of time?

® Post-pretraining: instead of training from scratch, we run another round of pre-training

83
How to instil this sense of time?
® Data: any dense video-captioning dataset!
Atime
Event X E EventY
Description(X) Description(Y)
84
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How to instil this sense of time?

¢ Data: any dense video-captioning dataset!

Event X ;

Description(X)

Atime
1 EventY

Description(Y)

Description(X) after Description(Y).

Description(X) before Description(Y).

85

How to instil this sense of time?

® Data: any dense video-captioning dataset!

Event X

Description(X)

Atime

EventY

Description(Y)

86
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How to instil this sense of time?

¢ Data: any dense video-captioning dataset!

Atime

Event X EventY

Description(X) Description(Y)

Description(X) before Description(Y)

.Description(Y) before Description(X) 6

Description(X) before Description(Y) 6

87

How to instil this sense of time?

® Base model: We start with a pre-trained model: VideoCLIP [1]

Video
representation

S3D feat
eatures Video Encoder Mean

—_— (BERT) ———— Pooling ——

—————>  Text Encoder ————
(BERT)
[CLS] Baby eats ice-cream
Sentence
representation

[1] Xu et al, VideoCLIP: Contrastive Pre-training for Zero-shot Video-Text Understanding, EMNLP 2021.

88
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How to instil this sense of time?

A red circle appears
before ayellow circle |:| Usual Positives

Ry

| Usual Negatives

89
How to instil this sense of time?
T
A red circle appears A yellow circle appears
beforeayellowcircle _ beforearedcircle |:| Usual Positives
) {
| Usual Negatives
: L . .
I’]I‘j f Time-order reversed negatives
'0 ‘0 |:|
2 ’ ‘ g (same sample)
o | | | Time-order reversed
d
’_ m negatives (cross sample)
L
. BN T Time-order reversal
2 u 2 function
90
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How to instil this sense of time?

Loss weight: Ogqme

A red circle appears D A yellow circle appears
before ayellow circle before a red circ]

?

Bl o
T/ . [

o
SN

Loss weight: 8

TACT: Temporal Adaptation by Consistent Time-ordering

91

Experiments

Little girl eats from cup after the child walks downhill Putting on shoe/shoes before holding a mirror

e

(a) TEMPO

A woman is standing in a room holding a hul:

—

a hoop before she begins to use the hula hoop
- \

PR T

The team shakes hands with the opposing team after a team groups together holding a trophy
r = vy —_—

g BTN SRR |
S5 n® SN
S

(b) ActivityNet (d) Charades-Ego

(c) Charades

Taking a broom from somewhere before holding a dish

ks
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Experiments

TEMPO ActivityNet Charades Charades-Ego
265 75
g 80 65
= 70
S 60
< 70 65 60
% 55 60
g 60 55
g 50 55
&
50 50 50
0 5 10 0 5 10 0 5 10 0 5 10
Retrieval (R@1) Retrieval (R@1) Retrieval (R@1) Retrieval (R@1)
93
TEMPO ActivityNet Charades Charades-Ego
265 75
§ 80 65
3 70
860
NJ 70 65 60
g 55
9
< 60
e 60 55
g 50 55
&
50 50 50
0 5 10 0 5 10 0 5 10 0 5 10
Retrieval (R@1) Retrieval (R@1) Retrieval (R@1) Retrieval (R@1)
Random ® Baseline: VideoCLIP without temporal ordering % Ours Desirable area
94
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Experiments: Synthetic benchmark

A red circle appears before a yellow circle

Training Dataset

Accuracy on

A yellow circle appears before a red circle

synthetic data
TEMPO 64.4
ActivityNet 52.5
Charades 65.0
Charades-Ego 85.6

I Time order task

95
Does it work beyond this narrow sense of time?
® Does acquiring this narrow sense of time help other general temporal tasks? We find
benefits on several temporal reasoning tasks.
Generalization to other temporal tasks
40 Chance
E None
gw I Non-temporal
2 Bl Temporal (Ours)
. I ||
Temporal SSv2 Next-QA AGQA
96
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Key takeaways

We propose a “test of time” for video-language models. Existing
models fail this test.

Our simple TACT recipe instills this sense of time without re-training
from scratch.

bpiyush.github.io/testoftime-website/

2.b Adaptation by video-audio

© O

Yunhua Zhang Hazel Doughty Ling Shao Cees Snoek
University of Amsterdam University of Amsterdam Inception Institute of Al University of Amsterdam

Audio-Adaptive Activity Recognition Across Video Domains. In CVPR 2022.

98
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Activity recognition under domain shift

Scenery shift Camera viewpoint shift Actor shift

99

Proposed solution

We deal with the vision distribution shift with the aid of activity sounds.

Source domain Target domain

|- Characteristic sound signals of audible activities
(Playing piano, playing guitar, ...)

Viewpoint Shift

Sleeping > Environmental sounds of silent activities

Situp (Sounds in the gym), Camping (Outdoor sounds)

100
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Audio-balanced learning

Motivation: videos from different domains often have different label distributions,
not only in terms of activity classes but also their interactions with objects or the
environment.

Solution: learn each class and each type of interaction equally

Source domain | Target domain

Rare interaction Frequent interaction | ;Frequentinteraction

Opening
activity

More similar

101
Absent-activity learning
Groundtruth activity: Absent activities predicted by audio:
pour wash
close
open
102
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Audio-adaptive approach

Supervised by audio-balanced learning and absent-activity learning

Target domain audio

= i~

Absent-activity learning

Audio encoder Target domain Absent-activity loss
===

Audio prediction

our main io io-| i
Source do aud Audio- based)attentmn TR Ty

Attention vector

Target domain video

Visual encoder

Source domain video

r
I I
! d | —> EORRT > | | e———
S | 1
| | Pseudo-absent -
1 Visual prediction
I | I label £
J i

Audio-balanced learning % i I]]ﬂ]]]_]l
Source di { )

) [

Y T doz
HI:|:|:|:I:| | ‘ ’\' ‘x/’v clisterng weights
AR _
| - o — @
< 7 Y & -
C 1 S A e

Visual prediction ‘9” -

Audio-balanced loss —1—

Assigning

Activity class

103
Results
Scenery shift Viewpoint shift
EPIC-Kitchens CharadesEgo
Model Top-1 (%) mAP (%)
Visual-only 48.0 23.1
Ours (no audio in testing) 50.7 24.5
Ours 59.2 26.3
104
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Actor-shift: success case

Source domain

Target domain

/'

Groundtruth: sleeping
Prediction: sleeping
Confidence: 0.76

105

Actor-shift: success case

Source domain

Target domain

B (R | I
| ‘
|

e =

Groundtruth: opening door
Prediction: opening door
Confidence: 0.85

106
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Actor-shift: failure case

Source domain Target domain

Groundtruth: drinking
Prediction: eating
Confidence: 0.35

107
Actor-shift: failure case
Source domain Target domain
Groundtruth: running
Prediction: swimming
Confidence: 0.48
108
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Key takeaways

Showed invariant properties of sound to reduce visual domain gap.
Better adaptation ability than visual-only solutions
Benefits from audio more than alternative audiovisual fusion methods

Generalize models to new environments, viewpoints and actors

109
2.c Adaptation at night
Yunhua Zhang Hazel Doughty Cees Snoek
University of Amsterdam University of Amsterdam University of Amsterdam
Day2Dark: Pseudo-Supervised Activity Recognition beyond Silent Daylight. Submitted.
110
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Video datasets are biased to daylight conditions

Video dataset

EPIC-Kitchens
ActivityNet
Charades
Kinetics-400
Moments-in-Time

Kinetics-Sound

o S (0299R, +0.587G, +0.1445))
B H,xW,

EPIC-Kitchens 1.9%

ActivityNet 3.2%
Charades 3.6%
Kinetics-400 4.4%
Moments-in-Time 4.9%

Kinetics-Sound 8.3%

S (0.299R; + 0.587G + 0.144B;)

¥= H,xW,

112
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Problem statement: Day2Dark gap

EPIC-Kitchens

Activity recognition models suffer from
performance drops in low-illumination.

llluminance

§ == Swin-T

9 501 SlowFast

E

9 307

(]

a 10+ T T T T T T T
° 20 40 60 80 100 120 140 160

ERRRANGE AR =7

113
Problem statement: Day2Dark gap
EPIC-Kitchens /\
%sm DEb \ Activity recognition models suffer from
g 30 performance drops in low-illumination.
g. 10+ " " : " " " r
) 20 40 60 80 100 12 140 160
Illuminance
BRERNNGEE AR 37
% 100001 Caused by lack of training data and
5 |—|ﬂ distribution shift by lower color contrast
—E 0 - l—|l_|,_|
2 20 40 Illumlnancle00 120
114
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Problem statement: Day2Dark gap

EPIC-Kitchens Kinetics-Sound

§ == Swin-T 3\;’ == Swin-T

9 501 SlowFast 9 851 SlowFast

o e

3 30 3 754 ‘\/

(] (]

5104, ; ; ; ; ; ; ; & 654, ; ; ; ; ; ; ;
° 20 40 60 80 100 120 140 160 ° 20 40 60 80 100 120 140 160

llluminance Illuminance

ERRRANGE AR =7 ka2

g 8
g 3
2 S 2000 1
< 10000 1 5
: | in
Q
£ 01— '—"_"_||_| ! |—|'_‘ E o I ; |_|,_|
2 20 40 60 80 100 120 140 160 z 80 100 120 140 160

llluminance Illuminance

115
Technical contributions
I. A pseudo-supervised learning strategy that utilizes unlabeled dark videos,
which do not contain target activities.
Il. Darkness-aware audio-visual recognition to reduce the distribution shift and
find better cross-modal correspondences in the dark.
116



Unlabeled dark video examples

4

|

(1o

117

20/09/2023

[. Supervision beyond daylight

Activity label
(wash pan)

& Activity
Recognizer
" | Wash
iiim pan

Unlabeled dark video

118
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I. Supervision beyond daylight

acviylabet  G€Nerate pseudo-labels by auxiliary models
(wash pan) e.g. Video-text retrieval, sound source localization etc.

Predictions
/ / * Recognizer
odel1 Mode 2 Model 3

l E
iiim h

Unlabeled dark video

119
R o ] Pseudo-Label actvityibel G€Nerate pseudo-labels by auxiliary models
" +% (washpan) o o Video-text retrieval, sound source localization etc.
Encoder
Predictions
% é% % Activity Autoencode predictions into latent pseudo-label
Recognizer
Model 1 Model 2\ Model 3\
(e Wash
e
Unlabeled dark video
120
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I. Supervision beyond daylight

Pseudo-Label acviylabet  G€Nerate pseudo-labels by auxiliary models

Autoencoder Dere" . . . .
(wash pan) e.g. Video-text retrieval, sound source localization etc.
* Encoder L LU

Predictions
% % % — Autoencode predictions into latent pseudo-label
Recognizer
Model 1 Model 2 Model 3 . . .

Single distance function as the loss

7." ' (- . L Model output
¢ pan Ly = Z dist(g’,
iiii b = @ a7 Pseudo-label

Unlabeled dark video

121
[. Supervision beyond daylight
Pseudo-Label actvityibel G€Nerate pseudo-labels by auxiliary models
Autoencoder De°°de' (wash pan) : H i7ati
% e.g. Video-text retrieval, sound source localization etc.
:>I¢ Encoder L _ IU +
Predictions
% E% % p— Autoencode predictions into latent pseudo-label
Recognizer
J s M°de'2 M°de'3 Single distance function as the loss
.fl i Wash L ZU: J I Model output
¢ pan = ist(q’,
iiim u = @.a”) Pseudo-label
Unlabeled darkcvideo Overall training objective:
L = + /1LU
122
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I. Supervision beyond daylight

" ] Pseudo-Label acviylabet  G€Nerate pseudo-labels by auxiliary models

t: . . . .

. oi;:o < +% e.g. Video-text retrieval, sound source localization etc.
Encoder

Predlctlogs% %

=|Lu +

& Activity
“ Recognizer
Single distance function as the loss

';, g Wash Z P Model output
b= Y distc,
b & S Pseudo-label
Jj=1
Overall training objective:

Altoencode predictions into latent pseudo-label

>I<
el 1|

Model 2\

Unlabeled dark video

L= +/1LU

123

II. Darkness-aware audio-visual recognition

Darkness probe produces an n-way branch
p N attention to adapt to the current light condition

Visual
encoder

Adaptive
Encoder

Adaptive encoder encodes the visual features
bredgicion dccording to perceived darkness

Transformer

m;pﬁv;;&ﬂpt Adaptive |.:n.'ompt ggneration treats different
light conditions as different tasks

| Generation

Audio | B
encoder ‘

Transformer fuses adapted visual features,
prompts and audio features

A /

124
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Properties of our proposal

60 Visual-only
=®= This paper . . .
Largest improvement for lowest illuminance.

20 40 )60 80 100 120 140 160
Illuminance

Top-1 Accuracy (%)
B

35

The more unlabeled dark videos the better.

30

Top-1 (%) in Dark

0 2000 4000 6000 8000
Number of Videos

Even successful without labeled dark videos.

200 400 600 800 1000
Number of Videos

125

Bonus: also effective for occlusions

Tested on 182 EPIC-Kitchens videos with segmentation masks from Darkhalil et al.

We simulate occlusions by setting the pixel intensity of object regions to zero.

Visual encoder 26.4%
Vanilla multi-modal transformer 27.7%

[ This paper 29.8% J
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Comparison with image enhancement

EPIC-Kitchens

Model Venues Dark GFLOPs{,
KinD MM 2019 20.3 932.2
SCI CVPR 2022 241 34
Unsupervised enhancement ECCV 2022 26.4 108.8
LEDNet ECCV 2022 27.8 312.0

[ This paper 35.6 1.6 J

We are superior to image enhancement for both accuracy and computation time.

127

ualitative result for “take box’

Original

sequence

LEDNet = —_ = — Py
K: z "

KinD

Unsupervised
enhancement

lllumination for dark frames improve, but color distortions harm activity recognition.

128
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Failure case for “pick up knife’

Vanilla audio-visual transformer This paper

Verb prediction : put X Verb prediction: put X
Noun prediction: leek X Noun prediction: leek X

The right hand draws more attention than the left hand

Failure case: “slapping’

—
| e —

Vanilla audio-visual transformer This paper

prediction: laughing X Prediction; laughing X
Confidence: 1.0 Confidence: 0.86

The environmental sound distracts the model
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Key takeaways

Day2dark gap is wide-spread for multiple action recognition datasets and backbones.

Unlabeled dark videos and adaptively including sound reduces the gap.

Proposed model outperforms image enhancement and alternative fusion approaches.

131

3. Video generalization at test-time

132
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Yunhua Zhang Hazel Doughty
University of Amsterdam University of Amsterdam

Learning Unseen Modality Interaction. Submitted.

3.a Generalize over unseen modality combo’s

Cees Snoek
University of Amsterdam

133

Validation/Testing

Device 1 f Device 2 h
Training RGB & Audio Audio & Optical Flow
N % . /
e N
Device 1 Device 2
RGB & Audio Audio & Optical Flow
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Others: Robustness for modality-incomplete data

Device 1 Device 2
Training RGB & Audio Audio & Optical Flow
& )
4 B
Device 1 Device 2
RGB & Audio Audio & Optical Flow
Validation/Testing N /
e B
Device 3 Device 4
RGB Audio
& ) N )

One or more modalities could be missing during inference

Antoine Miech, et al. "Learning a text-video embedding from incomplete and heterogeneous data." In arXiv preprint 2018.
Mengmeng Ma, et al. ""Smil: Multimodal learning with severely missing modality." In AAAI 2021.
Nina Shvetsova, et al. "Everything at once-multi-modal fusion transformer for video retrieval." In CVPR 2022.

135
f Device 1 h Device 2
Training RGB & Audio Audio & Optical Flow
& )
s B\
Device 1 Device 2
RGB & Audio Audio & Optical Flow
Validation/Testing \ J
4 . B\
Device 3
RGB & Optical Flow
N J
136
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Challenges

Simple concatenation of unimodal features cannot learn cross-modal
correspondences when modality-complete data unavailable.

The accumulation should be agnostic for the order of modalities, and also
allow for any modality combinations

Simple addition of unimodal features is hard as modalities come in
different feature spaces and dimensionalities

137

Approach

: Feature Projection
T~ 1
0

Modality m, — Encoder }\ 50
€10) :(\;3’/
g
e

) Encoder :O_/T)O
Modality my —>| | 1
g E() ;8><:§

_____________________

Project modality-specific features into a common space while maintaining differentiating information.
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Approach

Feature Projection Dual Branch Prediction :
———— 1
Encod 1€ Laiign ~ :
. '
Modality my ——> I;:C(() )er i = Lsupervised |
1\ 1
Zn_; O = O
> 1
3 :
'g :
5 i
“(7’ 1
Modality my——> Eréc?(;er E Lpseudo :
> 1
i Y O !
7

Some modalities are less discriminative than others and cause overfitting.
To mitigate overfitting, we introduce an additional pseudo-supervised branch.

139

Evaluation

Video Classification Video Retrieval

(o]

iMatching

Source Video

Andrew Heaney plays
baseball in a field with
some other players.

EPIC Kitchens with 3 provided modalities MSR-VTT with 7 provided modalities

Note we define new splits to assure unseen modality interactions at test time

140
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Results
Video Classification Video Retrieval
Top-1 (%) T MnR ¢
Late fusion 18.1 723
Modality Complete (Nagrani et al.) 17.5 86.2
Modality Incomplete (Recasens et al.) 18.5 72.2
Ours: unseen modality interaction 23.7 66.2

Without the need for modality-complete data, our method learns a more
effective cross-modal fusion for unseen modality combinations

141

Robustness for modality incomplete at test-time

We show the improvement over a vanilla multimodal transformer.

RGB, Object, Speech, OCR
RGB, Scene, Audio, OCR
RGB, Scene, Speech

RGB, Object, Audio

RGB, Speech

Multimedia Retrieval

Our model can handle any input modality

RGB, Audio Our model most effective for more modalities

15 18 21

Improves robustness for all unseen combo’s

Improvement in Mean Rank

142
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Key takeaways

We can effectively make predictions for unseen modality interactions by
feature projections and pseudo-supervision

Our approach is suitable for classification, regression and retrieval, and can
handle a wide variety of modality combinations

143

Concluding encouragement

Learning to generalize in video space and time, and across
modalities and tasks, is an open research challenge.

First ideas have started to appear, much more research is needed.

V | S Prof. dr. Cees Snoek

https://ivi.fnwi.uva.nl/vislab/
L /\ El @cgmsnoek {x, ellis.social}

VIDED & IMAGE SENSE LAB
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