

w/ Hazel Doughty, CVPR 2022

Action: **peel**

How is the action done? evenly, backwards, carefully, quickly, properly

Dual-use concerns & responsibility

Powerful yet irresponsible

- Mis-alignment with human values
- Hallucination
- Lacking adaptability to social dynamics and cultural context
- Limited transparency and explainability
- Non-inclusive and often closed access
- Unsustainable energy footprint
- Lacking robustness

Powerful yet irresponsible

- Mis-alignment with human values
- Hallucination
- Lacking adaptability to social dynamics and cultural context
- Limited transparency and explainability
- Non-inclusive and often closed access
- Unsustainable energy footprint
- Lacking robustness

Empirical risk minimization and the i.i.d. assumption

Empirical risk minimization

Definition. Given a set of labeled data points $S = ((x_1, y_1), ..., (x_n, y_n))$, the empirical risk of a predictor $f : \mathcal{X} \to \mathcal{Y}$ with respect to the sample S is defined as

$$R_S[f] = rac{1}{n}\sum_{i=1}^n \mathit{loss}(f(x_i),y_i)$$
 .

i.i.d. assumption

It is typically assumed that training, validation and test set are independent and identically distributed.

Problem: Video self-supervised learning evaluation

	factor	. I. D		+	m d			
		ownstre	OWIIS	main	s and the second			
Finetuning								
1 it-ti aililig	UCF101	NTU60	Gym99	SSv2	EK 100			
None	75.4	92.9	89.4	56.8	25.7			
MoCo	83.5	93.4	90.6	57.0	26.4			
SeLaVi	84.9	92.8	88.9	56.4	33.8			
VideoMoCo	85.8	94.1	90.5	58.8	43.6			
Pretext-Contrast	86.6	93.9	90.3	57.0	34.3			
RSPNet	88.5	93.9	91.3	59.4	42.7			
AVID-CMA	89.3	94.0	90.6	53.8	29.9			
CtP	89.8	94.3	92.2	60.2	42.8			
TCLR	90.8	94.1	91.5	60.0	36.2			
GDT	91.1	93.9	90.4	57.8	37.3			
Supervised	94.1	93.9	91.8	61.0	47.7			
	Increasin	g domai	n shift					

	120101	° •)	owns	trea	m de			
J	D	ownstre	eam Do	main	5			
Pro training Finetuning								
1 ie-ti anning	UCF101	NTU60	Gym99	SSv2	EK 100			
None	75.4	92.9	89.4	56.8	25.7			
MoCo	83.5	93.4	90.6	57.0	26.4			
SeLaVi	84.9	92.8	88.9	56.4	33.8			
VideoMoCo	85.8	94.1	90.5	58.8	43.6			
Pretext-Contrast	86.6	93.9	90.3	57.0	34.3			
RSPNet	88.5	93.9	91.3	59.4	42.7			
AVID-CMA	89.3	94.0	90.6	53.8	29.9			
CtP	89.8	94.3	92.2	60.2	42.8			
TCLR	90.8	94.1	91.5	60.0	36.2			
GDT	91.1	93.9	90.4	57.8	37.3			
Supervised	94.1	93.9	91.8	61.0	47.7			
	Increasin	ig domai	n shift					

	factor	. I. D	07.000	+	m d				
	Tactor	1. D	OWIIS	urea	un uc				
Downstream Domains									
Pre-training		Fi	netuning						
The training	UCF101	NTU60	Gym99	SSv2	EK 100				
None	75.4	92.9	89.4	56.8	25.7				
MoCo	83.5	93.4	90.6	57.0	26.4				
SeLaVi	84.9	92.8	88.9	56.4	33.8				
VideoMoCo	85.8	94.1	90.5	58.8	43.6				
Pretext-Contrast	86.6	93.9	90.3	57.0	34.3				
RSPNet	88.5	93.9	91.3	59.4	42.7				
AVID-CMA	89.3	94.0	90.6	53.8	29.9				
CtP	89.8	94.3	92.2	60.2	42.8				
TCLR	90.8	94.1	91.5	60.0	36.2				
GDT	91.1	93.9	90.4	57.8	37.3				
Supervised	94.1	93.9	91.8	61.0	47.7				
	Increasin	g domai	n shift						

•			0 11110					
	D	ownstr	eam Do	main	5			
Finetuning								
rie-u anning	UCF101	NTU60	Gym99	SSv2	EK 100			
None	75.4	92.9	89.4	56.8	25.7			
MoCo	83.5	93.4	90.6	57.0	26.4			
SeLaVi	84.9	92.8	88.9	56.4	33.8			
VideoMoCo	85.8	94.1	90.5	58.8	43.6			
Pretext-Contrast	86.6	93.9	90.3	57.0	34.3			
RSPNet	88.5	93.9	91.3	59.4	42.7			
AVID-CMA	89.3	94.0	90.6	53.8	29.9			
CtP	89.8	94.3	92.2	60.2	42.8			
TCLR	90.8	94.1	91.5	60.0	36.2			
GDT	91.1	93.9	90.4	57.8	37.3			
Supervised	94.1	93.9	91.8	61.0	47.7			

ensitivity	factor	rI:D	owns	trea	ım do
	D	ownstr	eam Do	main	S
Pre-training		Fi	netuning		
110-training	UCF101	NTU60	Gym99	SSv2	EK 100
None	75.4	92.9	89.4	56.8	25.7
MoCo	83.5	93.4	90.6	57.0	26.4
SeLaVi	84.9	92.8	88.9	56.4	33.8
VideoMoCo	85.8	94.1	90.5	58.8	43.6
Pretext-Contrast	86.6	93.9	90.3	57.0	34.3
RSPNet	88.5	93.9	91.3	59.4	42.7
AVID-CMA	89.3	94.0	90.6	53.8	29.9
CtP	89.8	94.3	92.2	60.2	42.8
TCLR	90.8	94.1	91.5	60.0	36.2
GDT	91.1	93.9	90.4	57.8	37.3
Supervised	94.1	93.9	91.8	61.0	47.7
	Increasin	ig domai	n shift		

			owns	strea	m de		
•			-				
	D	ownstre	eam Do	main	S		
Pro training Finetuning							
110-training	UCF101	NTU60	Gym99	SSv2	EK 100		
None	75.4	92.9	89.4	56.8	25.7		
MoCo	83.5	93.4	90.6	57.0	26.4		
SeLaVi	84.9	92.8	88.9	56.4	33.8		
VideoMoCo	85.8	94.1	90.5	58.8	43.6		
Pretext-Contrast	86.6	93.9	90.3	57.0	34.3		
RSPNet	88.5	93.9	91.3	59.4	42.7		
AVID-CMA	89.3	94.0	90.6	53.8	29.9		
CtP	89.8	94.3	92.2	60.2	42.8		
TCLR	90.8	94.1	91.5	60.0	36.2		
GDT	91.1	93.9	90.4	57.8	37.3		
Supervised	94.1	93.9	91.8	61.0	47.7		
	Increasin	ng domai	n shift				

	D	ownstre	eam Do	main	5				
Pro_training	Finetuning								
1 ie-ti annig	UCF101	NTU60	Gym99	SSv2	EK 100				
None	75.4	92.9	89.4	56.8	25.7				
MoCo	83.5	93.4	90.6	57.0	26.4				
SeLaVi	84.9	92.8	88.9	56.4	33.8				
VideoMoCo	85.8	94.1	90.5	58.8	43.6				
Pretext-Contrast	86.6	93.9	90.3	57.0	34.3				
RSPNet	88.5	93.9	91.3	59.4	42.7				
AVID-CMA	89.3	94.0	90.6	53.8	29.9				
CtP	89.8	94.3	92.2	60.2	42.8				
TCLR	90.8	94.1	91.5	60.0	36.2				
GDT	91.1	93.9	90.4	57.8	37.3				
Supervised	94.1	93.9	91.8	61.0	477				

SEVERE benchmark: subset of our experiments

	Existing	ting SEVERE-benchmark									
Pre-training		Do	mains	Sa	mples	Act	ions		Tasks		
	UCF101	SS-v2	Gym-99	$UCF (10^{3})$	Gym-99 (10^3)	FX-S1	UB-S1	UCF-RC	Charades-MLC		
None	75.4	56.8	89.4	43.1	23.1	45.0	84.0	0.232	7.9		
MoCo	83.5	57.0	90.6	60.7	29.0	65.1	85.0	0.220	8.1		
SeLaVi	84.9	56.4	88.9	69.2	28.3	50.2	81.5	0.171	8.2		
VideoMoCo	85.8	58.8	90.5	65.8	19.2	60.4	82.1	0.171	10.5		
Pretext-Contrast	86.6	57.0	90.3	62.7	25.9	65.8	86.2	0.168	8.9		
RSPNet	88.5	59.4	91.3	75.7	32.2	63.5	85.1	0.151	9.1		
AVID-CMA	89.3	53.8	90.6	68.8	32.1	67.2	88.4	0.162	8.4		
CtP	89.8	60.2	92.2	63.7	31.2	79.7	88.4	0.178	9.6		
TCLR	90.8	60.0	91.5	70.6	24.5	61.0	85.3	0.149	11.1		
GDT	91.1	57.8	90.4	77.8	44.1	65.7	81.6	0.137	8.5		
Supervised	94.1	61.0	91.8	86.0	51.2	81.0	86.9	0.137	23.6		

Enables future video self-supervised methods to evaluate generalization along 4 factors.

Ablations

	UCF (10^3)	$\mathrm{Gym}(10^3)$	SSv2-Sub	UB-S1
Video Contrast				
Baseline	57.5	29.5	44.2	84.8
Tubelet Contrast				
Tubelet Generation	48.2	28.2	40.1	84.1
Tubelet Motion	63.0	45.6	47.5	90.3
Tubelet Transformation	65.5	48.0	47.9	90.9

Table 2: Tubelet-Contrastive Learning considerably out-
performs video contrast on multiple downstream set-
tings. Tubelet motion and transformations are key.

Ablations										
	UCF (10 ³) Gym (10) ³) SSv2-Su ¹	b UB-S1						
Video Contrast										
Baseline	57.5	5 29.5	44.2	84.8						
Tubelet Contrast										
Tubelet Generation	48.2	2 28.2	40.1	84.1						
Tubelet Motion	63.0	0 45.6	47.5	90.3						
		F 10.0	47.0	00.0						
Tubelet Transforma	ation 65.	5 48.0	47.9	90.9						
Tubelet Transforma	Contrasti	ve Learning	g considera	bly out-						
Tubelet Transforma Table 2: Tubelet- performs video	Contrasti contrast	ve Learning on multipl	g considera e downstre	ibly out-						
Tubelet Transforma Table 2: Tubelet - performs video ings. Tubelet mo	Contrasti contrast tion and tra	ve Learning on multipl ansformation	g considera e downstre 1s are key.	ibly out-						
Tubelet Transforma Fable 2: Tubelet- performs video ings. Tubelet mo	Contrastic contrast tion and tra	ve Learning on multipl ansformation	g considera e downstre ns are key.	ibly out-						
Tubelet Transforma Fable 2: Tubelet - performs video ings. Tubelet mo Tubelet Motion	Contrasti contrast tion and tra	ve Learning on multipl ansformation Gym (10 ³)	g considera e downstre ns are key. SSv2-Sub	ubly out- am set- UB-S1						
Tubelet Transforma Fable 2: Tubelet - performs video ings. Tubelet mo Tubelet Motion	$\frac{\text{ation} 65}{\text{Contrasti}}$ $\frac{\text{Contrast}}{\text{contrast}}$ $\frac{\text{UCF}(10^3)}{48.2}$	$\frac{5 48.0}{\text{ve Learning}}$ on multipl ansformation $\frac{\text{Gym} (10^3)}{28.2}$	g considera e downstre ns are key. SSv2-Sub 40.1	90.9 bly out- eam set- UB-S1 84.1						
Tubelet Transforma Fable 2: Tubelet - performs video ings. Tubelet mo Tubelet Motion No motion Linear	$\frac{\text{contrasti}}{\text{contrast}}$ $\frac{\text{UCF (10^3)}}{48.2}$	ve Learning on multipl ansformation Gym (10 ³) 28.2 34.6	g considera e downstre ns are key. SSv2-Sub 40.1 45.3	90.9 ubly out- cam set- UB-S1 84.1 88.5						

Ablations

	UCF (10^{3})	$\mathrm{Gym}(10^3)$	SSv2-Sub	UB-S1
Video Contrast				
Baseline	57.5	29.5	44.2	84.8
Tubelet Contrast				
Tubelet Generation	48.2	28.2	40.1	84.1
Tubelet Motion	63.0	45.6	47.5	90.3
Tubelet Transformation	65.5	48.0	47.9	90.9

Table 2: Tubelet-Contrastive Learning considerably out-
performs video contrast on multiple downstream set-
tings. Tubelet motion and transformations are key.

Tubelet Motion	UCF (10^{3})	$\operatorname{Gym}(10^3)$	SSv2-Sub	UB-S1
No motion	48.2	28.2	40.1	84.1
Linear	55.5	34.6	45.3	88.5
Non-Linear	63.0	45.6	47.5	90.3

Table 3: **Tubelet Motions.** Learning from tubelets with non-linear motion benefits multiple downstream settings.

Transformation	UCF (10 ³)	Gym (10 ³)	SSv2-Sub	UB-S1
None	63.0	45.6	47.5	90.5
Scale	65.1	46.5	47.0	90.5
Shear	65.2	47.5	47.3	90.9
Rotation	65.5	48.0	47.9	90.9

Table 4: **Tubelet Transformation.** Adding motion patterns to tubelet-contrastive learning through transformations improves downstream performance. Best results for rotation.

			ľ	Abla	ations
	UCF (10 ³)	Gym (10 ³)	SSv2-Sub	UB-S1	Tran
Video Contrast					None
Baseline	57.5	29.5	44.2	84.8	Scale
Tubelet Contrast					Shea
Tubelet Generation	48.2	28.2	40.1	84.1	Rota
Tubelet Motion	63.0	45.6	47.5	90.3	T 11
Tubelet Transformation	65.5	48.0	47.9	90.9	Table 4
Cable 2: Tubelet-Conerforms videocings. Tubelet motion	ntrastive I ontrast on and transf	Learning of multiple formations	considerat downstrea are key.	oly out- am set-	proves
Tubelet Motion UCH	F (10 ³) Gy	rm (10 ³) S	Sv2-Sub	UB-S1	
No motion 4	8.2	28.2	40.1	84.1	3
Linear 5	5.5	34.6	45.3	88.5	
Non-Linear 6	3.0	45.6	47.5	90.3	Table :

Table 3: **Tubelet Motions.** Learning from tubelets with non-linear motion benefits multiple downstream settings.

Transformation	UCF (10^3)	$\mathrm{Gym}(10^3)$	SSv2-Sub	UB-S1
None	63.0	45.6	47.5	90.5
Scale	65.1	46.5	47.0	90.5
Shear	65.2	47.5	47.3	90.9
Rotation	65.5	48.0	47.9	90.9

Table 4: **Tubelet Transformation.** Adding motion patterns to tubelet-contrastive learning through transformations improves downstream performance. Best results for rotation.

#Tubelets	UCF (10 ³)	Gym (10 ³)	SSv2-Sub	UB-S1
1	62.0	39.5	47.1	89.5
2	65.5	48.0	47.9	90.9
3	66.5	46.0	47.5	90.9

Table 5: **Number of Tubelets.** Overlaying two tubelets in positive pairs improves downstream performance.

а н

• • •

· · ·

Solid accu	racy gai	non	UCF-1	101 and H	IMDB-51
R(2+1)D Backbone	Modality	LICE101		- Duo fuoining	
Des Dradiation [76]		77.1			UCF-101
Pace Prediction [/b]	RGB	//.1	36.6		
VideoMoCo [56]	RGB	/8./	49.2	U-6(
RSPNet [58]	RGB	81.1	44.6		
SRTC [46]	RGB	82.0	51.2		
FAME [10]	RGB	84.8	53.5		
MCN [45]	RGB	84.8	54.5		
AVID-CMA [52]	RGB+Audio	87.5	60.8		HMDB-51
TCLR [9]	RGB	88.2	60.0		and the second second
TE [31]	RGB	88.2	62.2		
CtP [74]	RGB	88.4	61.7		
MotionFit [20]	RGB+Flow	88.9	61.4		HULL L
GDT [57]	RGB+Audio	89.3	60.0		
Ours w/ mini-Kinetics	RGB	90.7	65.0	5 Kinetics-400	

Generalization on SEVERE-benchmark

		Domains		Samples		Actions		Tasks			
	Backbone	SSv2	Gym99	UCF (10^3)	$Gym (10^3)$	FX-S1	UB-S1	UCF-RC↓	Charades	Mean	Rank↓
SVT [61]	ViT-B	59.2	62.3	83.9	18.5	35.4	55.1	0.421	35.5	51.0	8.9
VideoMAE [71]	ViT-B	69.7	85.1	77.2	27.5	37.0	78.5	0.172	12.6	58.1	8.3
Supervised [72]	R(2+1)D-18	60.8	92.1	86.6	51.3	79.0	87.1	0.132	23.5	70.9	3.9
None	R(2+1)D-18	57.1	89.8	38.3	22.7	46.6	82.3	0.217	7.9	52.9	11.6
SeLaVi [2]	R(2+1)D-18	56.2	88.9	69.0	30.2	51.3	80.9	0.162	8.4	58.6	11.0
MoCo [23]	R(2+1)D-18	57.1	90.7	60.4	30.9	65.0	84.5	0.208	8.3	59.5	9.1
VideoMoCo [56]	R(2+1)D-18	59.0	90.3	65.4	20.6	57.3	83.9	0.185	10.5	58.6	9.1
Pre-Contrast [69]	R(2+1)D-18	56.9	90.5	64.6	27.5	66.1	86.1	0.164	8.9	60.5	9.0
AVID-CMA [51]	R(2+1)D-18	52.0	90.4	68.2	33.4	68.0	87.3	0.148	8.2	61.6	9.0
GDT [57]	R(2+1)D-18	58.0	90.5	78.4	45.6	66.0	83.4	0.123	8.5	64.8	8.6
RSPNet [58]	R(2+1)D-18	59.0	91.1	74.7	32.2	65.4	83.6	0.145	9.0	62.6	8.0
TCLR [8]	R(2+1)D-18	59.8	91.6	72.6	26.3	60.7	84.7	0.142	12.2	61.7	7.6
CtP [74]	R(2+1)D-18	59.6	92.0	61.0	32.9	79.1	88.8	0.178	9.6	63.2	5.6
rs w/ mini-Kinetics	R(2+1)D-18	59.4	92.2	65.5	48.0	78.3	90.9	0.150	9.0	66.0	5.4
rs w/ Kinetics	R(2+1)D-18	60.2	92.8	65.7	47.0	80.1	91.0	0.150	10.3	66.5	4.1

Better generalization, even when using the 3x smaller Mini-Kinetics for pretraining.
Key takeaways

Contrastive learning with **synthetic tubelets** provides:

Simple and effective self-supervised video representation learning.

Data-efficient pretraining with less unlabelled video data.

Better generalization to diverse video domains and fine-grained tasks.

• Post-pretraining: instead of training from scratch, we run another round of pre-training

Activity recognition under domain shift

99

	Results	
	Scenery shift	Viewpoint shift
Model	EPIC-Kitchens Top-1 (%)	CharadesEgo mAP (%)
Visual-only	48.0	23.1
Ours (no audio in testing)	50.7	24.5
Ours	59.2	26.3

Key takeaways

Showed invariant properties of **sound to reduce visual domain gap**.

Better adaptation ability than visual-only solutions

Benefits from audio more than alternative audiovisual fusion methods

Generalize models to new **environments**, viewpoints and actors

Video datasets are biased to daylight conditions

111

Video datasets are biased to daylight conditions

Video dataset	Dark videos (Y<=40)
EPIC-Kitchens	1.9%
ActivityNet	3.2%
Charades	3.6%
Kinetics-400	4.4%
Moments-in-Time	4.9%
Kinetics-Sound	8.3%
$Y = \frac{\sum_{j=1}^{H_v \times W_v} (0.299H)}{1}$	$\frac{R_j + 0.587G_j + 0.144B_j)}{H_v \times W_v}$

Unlabeled dark video examples

	Venues	EPIC-Kitchens	
Model		Dark个	GFLOPs↓
Vanilla multi-modal transformer		29.8	1.4
KinD	MM 2019	20.3	932.2
SCI	CVPR 2022	24.1	3.4
Unsupervised enhancement	ECCV 2022	26.4	108.8
LEDNet	ECCV 2022	27.8	312.0
This paper		35.6	1.6

Comparison with image enhancement

Day2dark gap is wide-spread for multiple action recognition datasets and backbones.

Unlabeled dark videos and adaptively including sound reduces the gap.

Proposed model outperforms image enhancement and alternative fusion approaches.

3.a Generalize over unseen modality combo's

Yunhua Zhang University of Amsterdam

Hazel Doughty University of Amsterdam

Cees Snoek University of Amsterdam

Learning Unseen Modality Interaction. Submitted.

133

Kesuits				
	Video Classification	Video Retrieval		
	Top-1 (%) 个	MnR ↓		
Late fusion	18.1	72.3		
Modality Complete (Nagrani et al.)	17.5	86.2		
Modality Incomplete (Recasens et al.)	18.5	72.2		
Ours: unseen modality interaction	23.7	66.2		

