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How it started…

Laptev & Lindeberg, ICCV 2003
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How it’s going…
Du Tran et al., ICCV 2015
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w/ Jiaojiao Zhao et al., CVPR 2022
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w/ Kirill Gavrilyuk et al., CVPR 2020
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w/ Shuo Chen, Zenglin Shi & Pascal Mettes, ICCV 2021
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“gray dog running on a leash during dog show”

w/ Kirill Gavrilyuk Amir Ghodrati, & Zhenyang Li, CVPR 2019
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Unsupervised video segmentation
w/ Mohammadreza Salehi, Efstratios Gavves & Yuki Asano, ICCV 2023
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w/ Hazel Doughty, CVPR 2022

How is the action done?
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Dual-use concerns & responsibility

10



20/09/2023

6

11

12



20/09/2023

7

13

Powerful yet irresponsible
• Mis-alignment with human values
• Hallucination
• Lacking adaptability to social dynamics and cultural context
• Limited transparency and explainability 
• Non-inclusive and often closed access
• Unsustainable energy footprint
• Lacking robustness
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What assumption do all these works have in 
common at training time?
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Empirical risk minimization and the i.i.d. assumption
Empirical risk minimization

i.i.d. assumption
It is typically assumed that training, validation and test set are 
independent and identically distributed.
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Machine learning inspiration

Domain-invariant learning Source-domain augmentation

w/ Zehao Xiao et al., ICML 2021 w/ Mengmeng Jing et al., ICCV 2023

Meta-learning

w/ Yingjun Du et al., ICLR 2022

18



20/09/2023

10

More is different

Philip Anderson crystallized the idea of emergence, arguing 
that “at each level of complexity entirely new properties 

appear” — that is, although, for example, chemistry is 
subject to the laws of physics, we cannot infer the field of 

chemistry from our knowledge of physics.
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This lecture
Looks into the generalization abilities of modern video AI

1. Video generalization by pre-training

2. Video generalization by adaptation

3. Video generalization at test-time

20
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1. Video generalization by pre-training
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Supervised learning

Depends on a manual labeling effort, which is costly, errorprone, and biased
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Self-supervised learning using a proxy task

Self-supervised learning exploits (imposed) regularities in the data to learn from.

23

Self-Supervision

Model

Representation

Pretext 
Task

Model

Representation

Labels

Classifier

Play Violin Play Tennis

Climb Rope Braid Hair
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Example proxy tasks

Shuffle and Learn,  Mishra et. al., ECCV 2016  Video Clip Order Prediction, Xu et al., CVPR 2019
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A more advanced proxy task: contrastive learning
Uses Instance discrimination and enforces augmentation invariance.

Adaptation of image-based methods like MoCo, SimCLR, to video domain.
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Masked auto encoding transformers
VideoMAE masks random cuboids and reconstructs the missing one 

Zhan Tong, Yibing Song, Jue Wang, Limin Wang. VideoMAE: Masked Autoencoders are Data-Efficient Learners for 
Self-Supervised Video Pre-Training. In NeurIPS, 2022. 
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Problem: Video self-supervised learning evaluation 

Kinetics-400

Pre-training 

Kinetics-400 UCF-101 NTU-60 FineGym

Something Something EPIC-Kitchens-100 AVACharades

UCF-101

HMDB-51
Kinetics-400 UCF-101 NTU-60 FineGym

Something Something EPIC-Kitchens-100 AVACharades

Fine-tuning & Evaluation

28
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Pre-training and evaluation video too similar?

What if downstream video task is different?
Airport, shopping mall, hospital, etc.

Kinetics-400

Pre-training 

Kinetics-400 UCF-101 NTU-60 FineGym

Something Something EPIC-Kitchens-100 AVACharades

UCF-101

HMDB-51
Kinetics-400 UCF-101 NTU-60 FineGym

Something Something EPIC-Kitchens-100 AVACharades

Fine-tuning & Evaluation

Problem: Video self-supervised learning evaluation 

29

1.a How severe is benchmark-sensitivity?

How Severe is Benchmark-Sensitivity in Video Self-Supervised Learning? In ECCV 2022.

Piyush BagadFida Mohammad Thoker Cees Snoek
University of Amsterdam University of Amsterdam University of AmsterdamUniversity of Amsterdam

Hazel Doughty
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Proposed evaluation: four factors of sensitivity

IV. Downstream tasks

III. Downstream actionsI. Downstream domains

II. Downstream samples

Kinetics-400

Pre-training 

Action recognition Action detection Repetition counting

Kinetics-400 UCF-101 NTU-60 FineGym

Something Something EPIC-Kitchens-100 AVACharades

UCF-101Kinetics-400 UCF-101 NTU-60 FineGym

Something Something EPIC-Kitchens-100 AVACharades

FineGym-99

Kinetics-400 UCF-101 NTU-60 FineGym

Something Something EPIC-Kitchens-100 AVACharadesSS-v2

vs

Semantically different actions

vs

Semantically similar actions
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7 datasets / 6 tasks / 500 experiments
Considerable variety in video domain, the actions and tasks

Kinetics-400 UCF-101 NTU-60 FineGym

Something Something EPIC-Kitchens-100 AVACharades

Kinetics-400 UCF-101 NTU-60 FineGym

Something Something EPIC-Kitchens-100 AVACharades

Tasks: Action classification, Action detection, Repetition counting, Arrow of time prediction, 
Spatio-temporal detection, Multi-label classification

36
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9 video self-supervised learners

All methods come with weights for a R(2+1)D-18 network pre-trained on Kinetics-400

MoCo Video MoCo TCLR                                      GDT                                           RSPnet

AVID-CMA                                  Pretext Contrast SeLaVi CtP

37

Sensitivity factor I: Downstream domain

38
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Sensitivity factor I: Downstream domain
Downstream Domains

Increasing domain shift
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Sensitivity factor I: Downstream domain
Downstream Domains

Increasing domain shift
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Sensitivity factor I: Downstream domain
Downstream Domains

Increasing domain shift
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Downstream Domains
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Sensitivity factor I: Downstream domain
Downstream Domains

Increasing domain shift

43

Sensitivity factor I: Downstream domain
Downstream Domains

Increasing domain shift

Downstream Domains

UCF-101 finetuning performance does not 
generalize to other target domains.

44
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Sensitivity factor I: Downstream domain
Downstream Domains

Increasing domain shift
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Sensitivity factor I: Downstream domain
Downstream Domains

Increasing domain shift

46



20/09/2023

24

Sensitivity factor II: Downstream samples
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Supervised

Sensitivity factor II: Downstream samples

Downstream Samples
The gap and rank between methods 

changing considerably across 
sample sizes on each dataset.
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Sensitivity factor III & IV: Downstream actions & tasks

Downstream Actions

Most self-supervised 
methods are sensitive to 

action granularity 
in downstream dataset.

Downstream Tasks

UCF-101 action classification 
performance is mildly 

indicative on other tasks.

49

Key takeaways
No clear winner, different methods standing out in different settings.

Supervised pre-training is dominant across all sensitivity factors.

Contrastive methods encouraging temporal distinctiveness transfer well.

We select a subset of experiments as the ‘SEVERE’ benchmark

50
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SEVERE benchmark: subset of our experiments

Enables future video self-supervised methods to evaluate generalization along 4 factors. 

51

Problem of holistic contrastive learning
Uses Instance discrimination and enforces augmentation invariance.

👎 Favours coarse-grained features 
👎 Exploits background shortcut

👎 Limits generalizability
👎 Motion-variety constraints cause data hunger

52
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Solution: add synthetic tubelets during pretraining

53

1.b Tubelet-contrastive self-supervision

Tubelet-Contrastive Self-Supervision for Video-Efficient Generalization. In ICCV 2023.

Fida Mohammad Thoker Cees Snoek
University of Amsterdam University of AmsterdamUniversity of Amsterdam

Hazel Doughty
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Step 0: Crop a random patch from one clip

55

Step 1: Generate a tubelet
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Step 2: Add motion to the patch

Non-Linear Motion

Linear Motion

Non-Linear Motion

Linear Motion

Linear

Non-linear

57

Step 3: Add motion complexity by transformations
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Step 3: Add motion complexity by transformations

Scale Rotation Shear

Scale Rotation Shear

Scale Rotation Shear

Scale                               

Rotation                                

Shear
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Step 4: Overlay identical tubelet on two clips
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Step 5: Tubelet-contrastive learning

61

Examples of synthetically added tubelets
Non-Linear Motion

Linear Motion
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Ablations

video   

Video Contrast
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Ablations

video   

Video Contrast
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Ablations

video   

Video Contrast
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Ablations

video   

Video Contrast
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What does the model learn?
Temporal Contrastive Learning Tubelet-Contrastive Learning (Ours)

=

=

FineGym

Something Something v2

=

=

UCF101

Video-contrastive learning Proposed tubelet-contrastive learning

Without seeing any FineGym videos during training, our approach attends to motion

67

Adding synthetic motion improves data efficiency

Video-Contrastive Learning 

68
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Key benefit: we need 4x less video data

Tubelets simulate a richer variety of fine-grained motion than present in the original video 

Video 

69

Solid accuracy gain on UCF-101 and HMDB-51

IV. Downstream tasks

III. Downstream actionsI. Downstream domains

II. Downstream samples

Kinetics-400

Pre-training 

Action recognition Action detection Repetition counting

Kinetics-400 UCF-101 NTU-60 FineGym

Something Something EPIC-Kitchens-100 AVACharades

UCF-101Kinetics-400 UCF-101 NTU-60 FineGym

Something Something EPIC-Kitchens-100 AVACharades

FineGym-99

Kinetics-400 UCF-101 NTU-60 FineGym

Something Something EPIC-Kitchens-100 AVACharadesSS-v2

vs

Semantically different actions

vs

Semantically similar actions

UCF-101

HMDB-51

R(2+1)D Backbone pretrained on Kinetics-400

Ours w/ mini-Kinetics
Ours w/ Kinetics
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Generalization on SEVERE-benchmark

IV. Downstream tasks

III. Downstream actionsI. Downstream domains
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Generalization on SEVERE-benchmark

Better generalization, even when using the 3x smaller Mini-Kinetics for pretraining.

Ours w/ mini-Kinetics
Ours w/ Kinetics
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Key takeaways
Contrastive learning with synthetic tubelets provides:

Simple and effective self-supervised video representation learning.

Data-efficient pretraining with less unlabelled video data.

Better generalization to diverse video domains and fine-grained tasks.

73

2. Video generalization by adaptation
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Introduction
In this chapter we consider generalization by video representation 
adaptation, without retrainining from scratch.

We will exploit the (often) multimodal nature of video to aid us in this 
endeavour.

75

2.a Adaptation by video-language

Test of Time: Instilling Video-Language Models with a Sense of Time. In CVPR 2023.

Piyush Bagad Cees Snoek
University of Amsterdam University of AmsterdamIIIT, Hyderabad

Makarand Tapaswi
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! !"#$%&'("$)*"%+,-.)/&$0#&0+)($'+12&3+)4)&)2+5)6"1)$"7)'1&($($0)-&*8,+-
The problem

What does this picture show?

“A dog running”

77

! !"#$%&'("$)*"%+,-.)/&$0#&0+)($'+12&3+)4)&)2+5)6"1)$"7)'1&($($0)-&*8,+-
! 9&1'(3#,&1,:)&''1&3'(;+)2"1);(%+"-)0(;+$)<(0<)3"-'

The problem

What does this video show?

“A kid eating ice-cream”

78
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! =");(%+")2"#$%&'("$)*"%+,-)'1#,:)#$%+1-'&$%)'(*+>
The problem

“A kid eating ice-cream”

What does this video show?

79

! =");(%+")2"#$%&'("$)*"%+,-)'1#,:)#$%+1-'&$%)'(*+>
! ?#1)(%+&)2"1)&)@'+-')"2)'(*+A.)&-B)C#+-'("$-)'<&')<&;+)'+*8"1&,)1+,&'("$-

The problem

“False”

The baby eats ice-cream before walking down hill? True or False?

80
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! D<+)-8&'(&,)(*&0+)E(&-)($)3#11+$');(%+")E+$3<*&1B-
! F:$'<+'(3)E+$3<*&1B

The test of time

81

! G+)8(3B)&)-#('+)"2)-+;+$)"8+$,:)&;&(,&E,+);(%+"H,&$0#&0+)*"%+,-
! G<(,+)+I3+,,($0)&')'<+)3"$'1",)'&-BJ)'<+:)&,,)2&(,)&')'<+)'(*+H"1%+1)'&-B

Existing models fail this test of time

Chance
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How to instil this sense of time?

! 9"-'H81+'1&($($0.)($-'+&%)"2)'1&($($0)21"*)-31&'3<J)5+)1#$)&$"'<+1)1"#$%)"2)81+H'1&($($0
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How to instil this sense of time?

! =&'&.)&$:)%+$-+);(%+"H3&8'("$($0)%&'&-+'K
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How to instil this sense of time?
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How to instil this sense of time?

! =&'&.)&$:)%+$-+);(%+"H3&8'("$($0)%&'&-+'K
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How to instil this sense of time?

! =&'&.)&$:)%+$-+);(%+"H3&8'("$($0)%&'&-+'K
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How to instil this sense of time?

! L&-+)*"%+,.)G+)-'&1')5('<)&)81+H'1&($+%)*"%+,.)M(%+"N/O9)PQR

!"#$%&$'($)*+$,-.'/01234$0/5(6)7(-8'$36'9(6)-5-5:$;/6$<'6/97=/($,-.'/9>'?($@5.'67()5.-5:+$ABC13$DED"F

[CLS] Baby eats ice-cream

Video Encoder
(BERT)

Text Encoder
(BERT)

S3D features
Mean

Pooling

Video
representation

Sentence
representation
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How to instil this sense of time?
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How to instil this sense of time?
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How to instil this sense of time?

Loss weight: 𝛼!"#$

Loss weight: 𝛼%&'!!

Loss weight: 𝛽

TACT: Temporal Adaptation by Consistent Time-ordering

91

Experiments
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Experiments

93

Experiments

94
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Experiments: Synthetic benchmark

64.4

52.5

65.0

85.6

95

Does it work beyond this narrow sense of time?

! ="+-)&3C#(1($0)'<(-)$&11"5)-+$-+)"2)'(*+)<+,8)"'<+1)0+$+1&,)'+*8"1&,)'&-B->)G+)2($%)
E+$+2('-)"$)-+;+1&,)'+*8"1&,)1+&-"$($0)'&-B-S
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Key takeaways

!"#$%&$&'"#(#)*"'*#&+#*,-".#+&%#/,0"&12(345(4"#-&0"2'6#78,'*,34#
-&0"2'#+(,2#*9,'#*"'*6

:5%#',-$2"#;<=;#%">,$"#,3'*,22'#*9,'#'"3'"#&+#*,-"#?,*9&5*#%"1*%(,3,34#
+%&-#'>%(*>96

bpiyush.github.io/testoftime-website/

97

2.b Adaptation by video-audio

Audio-Adaptive Activity Recognition Across Video Domains. In CVPR 2022.

Ling ShaoYunhua Zhang Cees Snoek
University of Amsterdam Inception Institute of AI University of AmsterdamUniversity of Amsterdam

Hazel Doughty
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https://bpiyush.github.io/testoftime-website/
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Activity recognition under domain shift

Scenery shift Actor shiftCamera viewpoint shift

99

Proposed solution
We deal with the vision distribution shift with the aid of activity sounds.

Target domainSource domain

Viewpoint Shift
Sleeping

Scenery Shift
Cutting

Characteristic sound signals of audible activities

Environmental sounds of silent activities

Situp (Sounds in the gym), Camping (Outdoor sounds)

(Playing piano, playing guitar, …)

100
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Audio-balanced learning
Motivation: videos from different domains often have different label distributions,
not only in terms of activity classes but also their interactions with objects or the
environment.
Solution: learn each class and each type of interaction equally

Source domain Target domain

Opening 
activity

Rare interaction Frequent interaction Frequent interaction

More similar

101

Absent-activity learning

Absent activities predicted by audio:
wash
close
open

Groundtruth activity: 
pour

102
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Audio-adaptive approach
Supervised by audio-balanced learning and absent-activity learning

103

Results

Model
EPIC-Kitchens

Top-1 (%)
CharadesEgo

mAP (%)

Visual-only 48.0 23.1

Ours (no audio in testing) 50.7 24.5

Ours 59.2 26.3

Scenery shift Viewpoint shift

104
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Actor-shift: success case

Groundtruth: sleeping
Prediction: sleeping
Confidence: 0.76

Target domainSource domain

105

Actor-shift: success case
Target domainSource domain

Groundtruth: opening door
Prediction: opening door
Confidence: 0.85

106
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Actor-shift: failure case
Target domainSource domain

Groundtruth: drinking
Prediction: eating
Confidence: 0.35

107

Actor-shift: failure case
Target domainSource domain

Groundtruth: running
Prediction: swimming
Confidence: 0.48

108
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Key takeaways

Showed invariant properties of sound to reduce visual domain gap.

Better adaptation ability than visual-only solutions 

Benefits from audio more than alternative audiovisual fusion methods

Generalize models to new environments, viewpoints and actors

109

2.c Adaptation at night

Day2Dark: Pseudo-Supervised Activity Recognition beyond Silent Daylight. Submitted.

Yunhua Zhang Cees Snoek
University of Amsterdam University of AmsterdamUniversity of Amsterdam

Hazel Doughty
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Video datasets are biased to daylight conditions

Video dataset Dark videos (Y<=40)

EPIC-Kitchens 1.9%

ActivityNet 3.2%

Charades 3.6%

Kinetics-400 4.4%

Moments-in-Time 4.9%

Kinetics-Sound 8.3%

111

Video datasets are biased to daylight conditions

Video dataset Dark videos (Y<=40)

EPIC-Kitchens 1.9%

ActivityNet 3.2%

Charades 3.6%

Kinetics-400 4.4%

Moments-in-Time 4.9%

Kinetics-Sound 8.3%
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Problem statement: Day2Dark gap

Illuminance
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EPIC-Kitchens

Activity recognition models suffer from 
performance drops in low-illumination.
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Illuminance

EPIC-Kitchens

Activity recognition models suffer from 
performance drops in low-illumination.

Caused by lack of training data and 
distribution shift by lower color contrast
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Problem statement: Day2Dark gap
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Technical contributions
I. A pseudo-supervised learning strategy that utilizes unlabeled dark videos, 

which do not contain target activities. 

II. Darkness-aware audio-visual recognition to reduce the distribution shift and 
find better cross-modal correspondences in the dark.
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Unlabeled dark video examples

117

I. Supervision beyond daylight

Unlabeled dark video Labeled video

Wash
pan

Activity label
(wash pan)

Activity
Recognizer

𝐿!"
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I. Supervision beyond daylight

Unlabeled dark video Labeled video

Model 1 Model 2 Model 3

Wash
pan

Predictions

Activity label
(wash pan)

Activity
Recognizer

𝐿!"

Generate pseudo-labels by auxiliary models
e.g. Video-text retrieval, sound source localization etc.
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I. Supervision beyond daylight

Autoencoder

Unlabeled dark video Labeled video

Model 1 Model 2 Model 3

Wash
pan

Predictions

Activity label
(wash pan)

Activity
Recognizer

𝐿!"

Pseudo-Label

Encoder

Decoder
Generate pseudo-labels by auxiliary models
e.g. Video-text retrieval, sound source localization etc.

Autoencode predictions into latent pseudo-label
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I. Supervision beyond daylight

Autoencoder

Unlabeled dark video Labeled video

Model 1 Model 2 Model 3

Wash
pan

Predictions

Activity label
(wash pan)

Activity
Recognizer

𝐿𝒰 𝐿!"𝐿 =

Pseudo-Label

Encoder

Decoder
Generate pseudo-labels by auxiliary models
e.g. Video-text retrieval, sound source localization etc.

Autoencode predictions into latent pseudo-label

Single distance function as the loss
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'

𝑑𝑖𝑠𝑡( )𝑞$ , 𝑞$)
Model output

Pseudo-label
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I. Supervision beyond daylight

Autoencoder
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I. Supervision beyond daylight

Autoencoder

Unlabeled dark video Labeled video
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II. Darkness-aware audio-visual recognition

Darkness
Probe

Adaptive
Encoder

Tr
an

sf
or

m
er

Adaptive Prompt
Generation

Prediction

Visual
encoder

Audio
encoder

Darkness probe produces an n-way branch 
attention to adapt to the current light condition 

Adaptive encoder encodes the visual features 
according to perceived darkness 

Adaptive prompt generation treats different 
light conditions as different tasks

Transformer fuses adapted visual features, 
prompts and audio features

124



20/09/2023

63

Properties of our proposal

Largest improvement for lowest illuminance.

The more unlabeled dark videos the better.

Even successful without labeled dark videos.
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Bonus: also effective for occlusions
Tested on 182 EPIC-Kitchens videos with segmentation masks from Darkhalil et al.  
We simulate occlusions by setting the pixel intensity of object regions to zero.

Visual encoder 26.4%

Vanilla multi-modal transformer 27.7%

This paper 29.8%
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Comparison with image enhancement

EPIC-Kitchens

Model Venues Dark↑ GFLOPs↓

Vanilla multi-modal transformer 29.8 1.4

KinD MM 2019 20.3 932.2

SCI CVPR 2022 24.1 3.4

Unsupervised enhancement ECCV 2022 26.4 108.8

LEDNet ECCV 2022 27.8 312.0

This paper 35.6 1.6

We are superior to image enhancement for both accuracy and computation time.
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Qualitative result for ‘take box’

Illumination for dark frames improve, but color distortions harm activity recognition. 
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Failure case for ‘pick up knife’

This paper

Verb prediction: put
Noun prediction: leek

Vanilla audio-visual transformer

Verb prediction : put
Noun prediction: leek

✘

The right hand draws more attention than the left hand

✘
✘
✘
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Failure case: ‘slapping’

This paper

Prediction; laughing
Confidence: 0.86

Vanilla audio-visual transformer

prediction: laughing
Confidence: 1.0

✘ ✘

The environmental sound distracts the model
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Key takeaways
Day2dark gap is wide-spread for multiple action recognition datasets and backbones.

Unlabeled dark videos and adaptively including sound reduces the gap.

Proposed model outperforms image enhancement and alternative fusion approaches.

131

3. Video generalization at test-time
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3.a Generalize over unseen modality combo’s

Learning Unseen Modality Interaction. Submitted.

Yunhua Zhang Cees Snoek
University of Amsterdam University of AmsterdamUniversity of Amsterdam

Hazel Doughty
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Problem: Modality-complete assumption

Training

Device 1

Validation/Testing

Device 2

RGB & Audio

Device 1

RGB & Audio

Device 2

Audio & Optical Flow

Audio & Optical Flow
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Others: Robustness for modality-incomplete data

Training

Device 1

Validation/Testing

Device 2

RGB & Audio

Device 1

RGB & Audio

Device 2

Audio & Optical Flow

Audio & Optical Flow

Device 3

RGB

Device 4

Audio

One or more modalities could be missing during inference

Antoine Miech, et al. "Learning a text-video embedding from incomplete and heterogeneous data." In arXiv preprint 2018.
Mengmeng Ma, et al. "Smil: Multimodal learning with severely missing modality." In AAAI 2021.
Nina Shvetsova, et al. "Everything at once-multi-modal fusion transformer for video retrieval." In CVPR 2022.
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Our goal: Recognize unseen modality-interactions

Training

Device 1

Validation/Testing

Device 2

RGB & Audio

Device 1

RGB & Audio

Device 2

Audio & Optical Flow

Audio & Optical Flow

Device 3

RGB & Optical Flow
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Challenges
Simple concatenation of unimodal features cannot learn cross-modal 
correspondences when modality-complete data unavailable. 

The accumulation should be agnostic for the order of modalities, and also 
allow for any modality combinations

Simple addition of unimodal features is hard as modalities come in 
different feature spaces and dimensionalities
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Approach

Project modality-specific features into a common space while maintaining differentiating information.
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Approach

Some modalities are less discriminative than others and cause overfitting. 
To mitigate overfitting, we introduce an additional pseudo-supervised branch.
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Evaluation

Andrew Heaney plays
baseball in a field with
some other players.

Matching

Video RetrievalVideo Classification

Audio

MSR-VTT with 7 provided modalitiesEPIC Kitchens with 3 provided modalities

Note we define new splits to assure unseen modality interactions at test time
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Results

Without the need for modality-complete data, our method learns a more 
effective cross-modal fusion for unseen modality combinations

Video Classification Video Retrieval

Top-1 (%) ↑ MnR ↓

Late fusion 18.1 72.3
Modality Complete (Nagrani et al.) 17.5 86.2
Modality Incomplete (Recasens et al.) 18.5 72.2
Ours: unseen modality interaction 23.7 66.2
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Robustness for modality incomplete at test-time

Multimedia Retrieval

Our model can handle any input modality

Improves robustness for all unseen combo’s

Our model most effective for more modalities

We show the improvement over a vanilla multimodal transformer.
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Key takeaways
We can effectively make predictions for unseen modality interactions by 
feature projections and pseudo-supervision

Our approach is suitable for classification, regression and retrieval, and can 
handle a wide variety of modality combinations
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Concluding encouragement

Learning to generalize in video space and time, and across 
modalities and tasks, is an open research challenge. 

First ideas have started to appear, much more research is needed.

Prof. dr. Cees Snoek
https://ivi.fnwi.uva.nl/vislab/
@cgmsnoek {x, ellis.social}
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