
Neural Radiance Fields

ELLIS Summer School -
Large Scale AI

Recap - NeRFs

Volumetric
rendering

Training of NeRFs
Output

Color + Density
5D Input

Position + Viewing direction

Volumetric Rendering
 Single Ray 2

2

Rendering Loss

Training image

Neural Radiance Fields - Recap

(x,y,z,θ,Φ) (, , ,σ)

● The network is a simple ReLU MLP that maps from location/view direction to color/density
● Density σ describes how solid/transparent a 3D point is (can model, e.g., fog)
● Conditioning on view direction allows for modeling view-dependent effects

One step further wrt before: learning density without 3D as input

Spatial
location

Viewing
direction

Est.
color

Est.
density

FΘ

Neural Radiance Fields - Recap

Neural Radiance Fields - In Practice

(x,y,z)
Spatial

location

 (σ)
Est.

density

(θ,Φ)
Viewing

direction

Positional
Encoding

 (, ,)
Est.

color

● Color and density are conditioned on 3D input location
○ While color is conditioned on viewing direction to model view-dependant artifacts such as lighting,
○ density is not conditioned on it as the object surface should not depend on the viewing direction

● Positional encoding (or other forms of encodings) are often employed to better deal with high frequency details
● Oftentimes, multiple rounds of sampling are employed to estimate color based on 3D locations near the surface

Positional
Encoding

Libraries / Data

Different Open-Source Libraries

MultiNeRF

Supported Models in NerfStudio

K-Planes, CVPR 23

Temporal & Static Nerfs

Instruct Nerf2Nerf, ICCV 2023

3D Editing of NerFS with Text
Prompts

Instant NGP, Siggraph 2022

Fast training(/inference) of NeRFs
using trainable multi-level hash grids

Supported Models in NerfStudio

NeRFStudio - Supported models

Optimized training and
rendering speed for NeRFs

Enables to edit NeRF with
text prompts “Make it lego”

Enables NeRFs to have a
temporal dimension

Standard NeRF

Unpublished work including
several tricks such as pose
refinement

NeRF together with 3D
open-set semantic
segmentation

Supported Models in NerfStudio

NeRFStudio - Supported models

Optimized training and
rendering speed for NeRFs

Enables to edit NeRF with
text prompts “Make it lego”

Enables NeRFs to have a
temporal dimension

Standard NeRF

Unpublished work including
several tricks such as pose
refinement

NeRF together with 3D
open-set semantic
segmentation

Supported Models in NerfStudio

Parsing and loading of data.. Usually involves:
● RGB images
● Extrinsics and intrinsics camera parameters

RayBundle commonly includes
● Ray origin
● And ray direction

Defines the underlying radiance field. Given 3D
locations the fields predicts the Color and Density, etc.

Defines the model, including:
● Sampling of the points along the rays
● The chosen radiance fields and outputs
● The computed loss values

Data Convention - Acquire/load Data

Data Convention - Extrinsic Parameters

Also depth_file_path and mask_file_path are supported
and can be provided here if needed for the method.

Data Convention - Intrinsic Parameters

Pe
rs

pe
ct

iv
e

Ca
m

er
a

M
od

el
Sp

he
ric

al
 C

am
er

a
M

od
el

Data Convention - How can we obtain these parameters

Let’s Train

Installing NeRF Studio

Activate conda environment

conda create --name nerfstudio -y python=3.8

conda activate nerfstudio

python -m pip install --upgrade pip

Install torch

pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118

--extra-index-url https://download.pytorch.org/whl/cu118

Install cuda 11.8

conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit

Install tiny-cuda-nn

pip install ninja

git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/to

rch

Install NeRF Studio

pip install git+https://github.com/nerfstudio-project/nerfstudio.git

ns-train instant-ngp \

 --viewer.websocket-port 7007 nerfstudio-data \

 --data $data \

 --downscale-factor 4

This is the chosen model*.

Similarly, own model with its field can be
implemented and launch it the same way.

Training a Model with NeRF Studio

*https://github.com/nerfstudio-project/nerfstudio/blob/main/nerfstudio/configs/method_configs.py
 https://github.com/nerfstudio-project/nerfstudio/blob/main/nerfstudio/models/

Extend With Own Model

ns-render camera-path \

 --load-config $config_filename \

 --camera-path-filename $camera_path_filename \

 --output-path renders/output.mp4

The file containing all the extrinsics and
intrinsics parameters for the video to be
rendered

Rendering a Trajectory From a Trained Model with NeRF Studio

3D Mesh Extraction From NerfStudio

ns-export poisson \

 --load-config $config_filename \

 --output-dir $base_dir

Exercises

Pose Refining Neural Radiance
Fields

Exercise 1 - Train NeRF and Render

ns-train instant-ngp \

 --viewer.websocket-port 7007 nerfstudio-data \

 --data $data_noisy \

 --downscale-factor 4

Augmented the 3D rotation with noise
of less than 3 degrees.

Exercise 1 - Train NeRF and Render

Train a NeRF
1.) Download the DTU dataset.

Link: https://roboimagedata.compute.dtu.dk/?page_id=36
2.) Train a NeRF with an instant NGP backbone on the images.
3.) Render novel trajectory.

Augment Camera Poses with Noise
1.) Add noise to the camera rotations.
2.) Train a NeRF with an instant NGP backbone.
3.) Render novel trajectory.
4.) Keep increasing the noise and repeat until the reconstruction fails.
 (In real life poses are often not super accurate, especially when coming from a
 handheld device)

https://roboimagedata.compute.dtu.dk/?page_id=36

Exercise 2- Enable Training NeRF on Noisy Poses

Dealing With Noise
1.) Add the camera poses as additional optimization target and optimize over
reconstruction and poses.

● Try out different representations for the 3D rotation (quaternions, Zhou et al.
CVPR 2019).

● Consider slowly increasing the expressiveness of the employed Nerf (BARF).

Open-End
Improve the noise handling to enhance accuracy and robustness:

● Bundle adjustment from BARF
● 2D correspondences and pseudo depth from SPARF
● Camera preconditioning from CamP
● Projected ray distance from SCNeRF
● …?

https://scholar.google.com/scholar_url?url=http://openaccess.thecvf.com/content_CVPR_2019/html/Zhou_On_the_Continuity_of_Rotation_Representations_in_Neural_Networks_CVPR_2019_paper.html&hl=en&sa=T&oi=gsb&ct=res&cd=1&d=16958244609855617391&ei=f07nZLKGHcKsmgHLkY6IDQ&authuser=1&scisig=AFWwaeaJifqR00swlHw4QCLP5FAn
https://arxiv.org/abs/2104.06405
https://arxiv.org/abs/2104.06405
https://arxiv.org/abs/2211.11738
https://camp-nerf.github.io/
https://postech-cvlab.github.io/SCNeRF/

OpenSet 3D semantic segmentation

Existing methods for 3D scene understanding assume pre-defined set of object types (“closed-world”
assumption).

3D Scene Understanding

Panoptic Lifting for 3D Scene Understanding with Neural Fields
(CVPR 2023 Highlight)

Model Results

3D Scene Understanding

OpenScene: 3D Scene Understanding with Open Vocabularies

The real world is, however, much more complex. Further, the data is usually not representing each class
equally, leading to a significant drop in accuracy.

Hence, can we segment anything in our NeRF/3D mesh?

pip install git+https://github.com/kerrj/lerf

ns-train lerf-lite \

 --viewer.websocket-port 7007 nerfstudio-data --data $data \

 --downscale-factor 4

composite_0

Prompt -
(“floor”,

“sign”)

Segmenting with LeRF

Exercise 2 - Train NeRF and Render

Train a NeRF and Render

1.) Download the Replica dataset:
● https://github.com/cvg/nice-slam/blob/master/scripts/download_replica.sh
● https://github.com/facebookresearch/Replica-Dataset

2.) Train a NeRF with an instant NGP backbone on the images
3.) Render a novel trajectory.

https://github.com/cvg/nice-slam/blob/master/scripts/download_replica.sh
https://github.com/facebookresearch/Replica-Dataset

Exercise 2 - Label The Input Image and Train Again

Label the data with CLIP features

1.) Employ LSeg / OpenSeg to label each training image with CLIP-like pixel level features.
2.) Train again the NeRF but with additional branch which learns to render the LSeg features*.
3.) Render novel trajectory with Lseg features.

*https://github.com/nerfstudio-project/nerfstudio/blob/main/nerfstudio/fields/vanilla_nerf_field.py

Exercise 2 - Run and Improve

Segment Different Objects and Properties
1.) Render a view with its LSeg features and compute the correlation between LSeg and the CLIP encoding from a
text prompt.
2.) Try out different objects as well as material properties such as glass.

Open End Question
How could the segmentation be improved:

● What about different object sizes?
● What about disagreement between different training views?
● …?

Novel RGB “ceiling” “door”Action: “sit” Material:
“metal”

Property: “soft”

Thanks / Questions?

