
Large-scale Artificial Intelligence

Modena, Italy 18-22 September 2023

Cross-modal Video Generation

NICU SEBE
Univ. of Trento

niculae.sebe@unitn.it

Sumer School XR&AI Matera, Italy

Collaborators: Xavier Alameda-Pineda,
Stephane Lathuiliere, Willi Menapace,
Elisa Ricci, Subhankar Roy, Aliaksandr
Siarohin, Hao Tang, Sergey Tulyakov, etc.

Deep Fakes: Driving Video, Static Input

Deep Fakes: Video/Voice Inpainting

Creating Games with Real Footage

Image and Video Generation

Deep
Generative
Models for

Image/Video
Generation
& Animation

Arbitrary
Object

Animation
with/without
3D Modeling

Pose-based Human Image Generation

• Siarohin, et al., “Deformable GANs for Pose-based Human Image Generation”, CVPR18

• Siarohin, et al., “Appearance and Pose-Conditioned Human Image Generation using Deformable GANs”, PAMI,

43(4):1156-1171, April 2021

https://github.com/AliaksandrSiarohin/pose-gan

https://github.com/AliaksandrSiarohin/pose-gan

Pose-based Human Image Generation

Ground Truth

Prediction

Real or Fake

Pose-based Human Image Generation

(a) typical “rigid” scene generation task: the local structures of conditioning and
output image local structures are well aligned

(b) deformable-object generation task: the input and output are not spatially aligned

Pose-based Human Image Generation

Pose-based Human Image Generation

We need a deformation model

Pose-based Human Image Generation

• For each specific body part, compute an affine transformation fh

• Use fh to “move” the corresponding feature-map content

Pose-based Human Image Generation

Target
Stream

target pose
heat map

using gaussian
blurring

feature maps
“shuttled” by skip
connections from

the Hb stream

feature maps directly
obtained using up-

convolutional filters
applied to the

previous-layer maps

Pose-based Human Image Generation

Target
Stream

Source
Stream

deformed
tensors d(F)

“shuttled” by
deformable

skip
connections
from (xa,Ha)

stream

• joint locations in xa and Ha are spatially aligned (by construction)
• in Hb the joint locations may be far apart from xa

• Hence, Hb is not concatenated with the other input tensors

Pose-based Human Image Generation

Target

Stream

Source

Stream

xa Target pose GT Baseline DSC Full

Qualitative results on the Market-1501 dataset

Conditional Image Generation

xa Target pose GT Baseline DSC Full

Qualitative results on the DeepFashion dataset

Badly generated images
• errors of the pose estimation

• ambiguity of the pose estimation

• rare object appearance

• rare poses

Image Animation

• Siarohin, et al., “Animating Arbitrary Objects via Deep Motion Transfer”, CVPR19

• Siarohin, et al., “First Order Motion Model for Image Animation”, NeurIPS19

https://github.com/AliaksandrSiarohin/first-order-model

https://github.com/AliaksandrSiarohin/first-order-model

Image Animation: Appearance or Motion Transfer?

Appearance transfer
Detect pose in each frame of the driving video

Apply our pose-base image generator with the source image and each
detected pose

Problems: requires a detector, does not work when the shapes of the object are
different (ie. short to tall persons) => Use Unsupervised Transfer Motion

1 8 / 3 1

Image Animation with MOviNg KEYpoints

1 8 / 3 1

-

Monkey-Net

Image Animation with MOviNg KEYpoints

1 8 / 3 1

-

Again, we have an alignment problem

Monkey-Net

Image Animation with MOviNg KEYpoints

1 8 / 3 1

• Monkey-Net has a motion-specific keypoint detector Δ, a motion prediction network M,
and an image generator G (reconstructs the image x′ from the keypoint positions Δ(x) and
Δ(x′)); Optical flow computed by M is used by G to handle misalignments between x and x′

• The model is learned with a self-supervised learning scheme

-

Monkey-Net

Image Animation: Motion Prediction

1 8 / 3 1

From the appearance of the first frame and the keypoints motion, the network M predicts a
mask for each keypoint and the residual motion

Image Animation Generation

At testing time the model generates a video
with the object appearance of the source
image but with motion from driving video:
• transfer the motion between the source

image and each driving frame
• provide the generator the relative

difference between keypoints

Motion-supervised Co-Part Segmentation

• Siarohin, et al., “Motion Supervised Co-Part Segmentation”, ICPR20

https://github.com/AliaksandrSiarohin/motion-cosegmentation

https://github.com/AliaksandrSiarohin/motion-cosegmentation

Self-supervised Co-Part Segmentation

Leverage motion info to train a segmentation network without annotation
• At training, use frame pairs (source and target) extracted from the same video => predict

segments in target that can be combined with a motion representation between the two
frames to reconstruct the target frame

• At inference, use the trained segmentation model to predict object parts segments

Self-supervised Co-Part Segmentation

• Segmentation Module predicts the segmentation maps YS and YT, and the affine
motion parameters

• Reconstruction Module: (1) computes a background visibility mask V and an optical
flow F; (2) reconstructs the target frame XT by warping the features of the source frame
XS and masking occluded features

Video Generation

Playable Video Generation

• Menapace, et al., “Playable Video Generation”, CVPR21

https://github.com/willi-menapace/PlayableVideoGeneration

https://github.com/willi-menapace/PlayableVideoGeneration

Playable Video Generation

• Consider a set of videos depicting an agent acting in an environment
• Differently from other methods that use frame by frame action annotations, we assume

no annotation is present

Playable Video Generation

• Learn a model that represents the observed environment.
• Allow the user to input actions to the model through a controller at test time

• Produce a video where the agent acts according to the actions specified by the user

Playable Video Generation

Architecture

• First we sample an input sequence and use an encoder network to extract frame
features

Architecture

• Use then pairs of successive features to infer the action that was performed by the
agent in the corresponding transition using an action network

• Given the frame features and the action, a recurrent model is used to produce features
representing the successive state

Architecture

Architecture

• The successive state is translated back to an image using a decoder network

Architecture

• For extra supervision, we encode back the produced frame using the encoder and the
action network

Architecture

• Impose different self supervision losses on the frames, the frame features and the
produced actions: use a mutual information maximization loss between actions and
reconstructed actions as the main driving loss for action learning

Architecture

• The model is then unrolled over the whole sequence

ft etEmb

ft+1 et+1Emb

Action Network

• The action network first encodes the frame features using a Multi Layer Perceptron to
produce two embeddings

etEmb

ft+1 et+1Emb

dt

Action Network

• We take the difference between these embedding as the representation of the
transition between two frames: action direction dt

ft

dtt-SNE plot of

Action Network

• When visualized, the learned space of action
directions is a representation of the different
types of transitions that are observed in the
training videos

f
t

etEmb

ft+1 et+1Emb

dt

MLP at

Which action is done
● Left
● Right

Action Network

f
t

etEmb

ft+1 et+1Emb

dt

dtt-SNE plot of

• Use an MLP to assign a label to each point dt: the
high-level action associated to the current frame

• Use of action variability embeddings to ensure a
well-posed reconstruction loss on the frames

MLP at

vt

Expectation of distance from cluster centroids

Action Network

f
t

etEmb

ft+1 et+1Emb

dt

dtt-SNE plot of

Which action is done
● Left
● Right

How the action is done
● Speed
● Limb movement

• For each dt compute the expectation of its
distance from the cluster centroids: variability
embedding vt => the specific way in which an
action is performed

Results

• We learn a wide range of actions. The meaning of actions is consistent, independently
from the starting frame the action is applied to

Action Interpolation

• At inference, we typically pose vt = 0 and let the user specify actions at at each time step
• vt can also be obtained from an action direction dt that moves between the centroids of

different actions: it is possible to generate a variety of different movement directions, eg.
diagonal movements

Playable Environments

• Menapace, et al., “Playable Environments: Video Manipulation in Space and Time”, CVPR22

https://github.com/willi-menapace/PlayableEnvironments

https://github.com/willi-menapace/PlayableEnvironments

Playable Environments

• Learn a model that represents the observed environment
• Allow the user to input actions to the model through a controller at test time

Playable Environments

Playable Environments

Playable Environments

Framework

Framework Characteristics

1. Playability

1. Playability

2. Multi Object

3. Deformable Objects

Framework Characteristics

1. Playability

2. Multi Object

3. Deformable Objects

4. Camera Control

Framework Characteristics

1. Playability

2. Multi Object

3. Deformable Objects

4. Camera Control

5. Style Control

6. Robustness

Framework Characteristics

Learned Actions

Learnable Game Engines (LGEs)

• Menapace, et al., “Plotting Behind the Scenes: Towards Learnable Game Engines”, arxiv 2023

https://learnable-game-engines.github.io/lge-website/

https://learnable-game-engines.github.io/lge-website/

Related Work

Method

Two separately trained components:

Method

Synthesis Module

• NERF-based: renders the state of the environment from a
given viewpoint

• A composition of NERFS, one for each object

• The model is trained using L2 and perception
reconstruction losses

Animation Module
• Diffusion-based: produces sequences of states based on

conditioning signals
• Values: pose, location, velocity of a player or the ball

• Natural language: what a player is doing

Animation Module
• The conditions are optional: the model can be used at

inference time for different task by changing the structure
of the conditioning

Animation Module
• The model is based on a transformer architecture where

a frozen T5 encodes the natural language conditioning

• A mask is specifying which part of the input serves as
conditioning and which needs to be predicted

Animation Module

• Finally, the model is trained to predict noise applied to
the sequence

Controllable Synthesis

Text-Controllable Animation

Learnable Game Engines:

• Understand physics and game logic

• Can receive action inputs expressed with natural language

Text-Controllable Animation

How the player is moving

How the ball is hit

Where the ball is sent

Designing Game Strategy

Making the player win:

• Reconstruct the scene

Designing Game Strategy

• Devise winning actions

• Animate players

• Render the results

Designing Game Strategy

Original video = Bottom player loses
½ Original video + “The [TOP] player

doesn’t catch the ball”=

Bottom player wins

Designing Game Strategy

Play LGEs as Videogames

Play Against an Opponent

LGE Opponent Control

Constrain generation using:

• Desired values of the environment states

• Actions expressed with natural language

Director’s Mode

Director’s Mode

First Frame Last Frame

Director’s Mode

Director’s Mode

The conditioning is
flexible, e.g., give multiple
actions to constrain the
solution

LGE Datasets

• 7112 video sequences at 1920x1080@25fps
• 15.5 hours of videos
• 1.12M fully annotated frames
• 25.5k unique captions

Tennis

• 61 video sequences at 1024x567@20fps
• 1.2 hours of videos
• 68.5k fully annotated frames
• 1.24k unique captions

Minecraft

LGE Datasets

Synthesis Model Evaluation

Learnable Game Engines Playable Environments

• Increased resolution
• No checkerboard artifacts

Synthesis Model Evaluation

Learnable Game Engines Playable Environments

• Increased resolution
• No checkerboard artifacts

Animation Model Evaluation

Learnable Game Engines Playable Environments

• Higher quality and higher frame rate sequences
• Better scene dynamics

Beyond Playable Environments

• Can we generate large scenes with manipulable objects inside?

• Can we do that without object localization and camera calibration?

• This environment representation can be used to model complex games with
many objects and large environment

Music-Guided Dance Video Synthesis

DanceGAN

Music-Guided Dance Video Synthesis

Where Are We Going Now …

● Incorporating 3D information

● Modeling complex interactions between actors and

between actors and the scene

● Cross-modal seamless integration between text, audio,

and visual information

● More attention to privacy and deep fakes detection

● …

	Slide 1: Cross-modal Video Generation
	Slide 2: Deep Fakes: Driving Video, Static Input
	Slide 3: Deep Fakes: Video/Voice Inpainting
	Slide 4
	Slide 5
	Slide 6: Pose-based Human Image Generation
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Image Animation
	Slide 19: Image Animation: Appearance or Motion Transfer?
	Slide 20: Image Animation with MOviNg KEYpoints
	Slide 21: Image Animation with MOviNg KEYpoints
	Slide 22: Image Animation with MOviNg KEYpoints
	Slide 23: Image Animation: Motion Prediction
	Slide 24: Image Animation Generation
	Slide 25
	Slide 26: Motion-supervised Co-Part Segmentation
	Slide 27: Self-supervised Co-Part Segmentation
	Slide 28: Self-supervised Co-Part Segmentation
	Slide 29
	Slide 30: Playable Video Generation
	Slide 31: Playable Video Generation
	Slide 32: Playable Video Generation
	Slide 33: Playable Video Generation
	Slide 34: Architecture
	Slide 35: Architecture
	Slide 36: Architecture
	Slide 37: Architecture
	Slide 38: Architecture
	Slide 39: Architecture
	Slide 40: Architecture
	Slide 41: Action Network
	Slide 42: Action Network
	Slide 43: Action Network
	Slide 44: Action Network
	Slide 45: Action Network
	Slide 46: Results
	Slide 47: Action Interpolation
	Slide 48
	Slide 49: Playable Environments
	Slide 50: Playable Environments
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Learnable Game Engines (LGEs)
	Slide 61
	Slide 62: Method
	Slide 63: Method
	Slide 64: Synthesis Module
	Slide 65: Animation Module
	Slide 66: Animation Module
	Slide 67: Animation Module
	Slide 68: Animation Module
	Slide 69
	Slide 70: Text-Controllable Animation
	Slide 71: Text-Controllable Animation
	Slide 72
	Slide 73: Designing Game Strategy
	Slide 74
	Slide 75: Designing Game Strategy
	Slide 76: Designing Game Strategy
	Slide 77: Play LGEs as Videogames
	Slide 78: Play Against an Opponent
	Slide 79: LGE Opponent Control
	Slide 80: Director’s Mode
	Slide 81: Director’s Mode
	Slide 82: Director’s Mode
	Slide 83: Director’s Mode
	Slide 84: LGE Datasets
	Slide 85: LGE Datasets
	Slide 86: Synthesis Model Evaluation
	Slide 87: Synthesis Model Evaluation
	Slide 88: Animation Model Evaluation
	Slide 89
	Slide 90: Music-Guided Dance Video Synthesis
	Slide 91: DanceGAN
	Slide 92
	Slide 93
	Slide 94
	Slide 95

