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Deep Fakes: Driving Video, Static Input



Deep Fakes: Video/Voice Inpainting



Creating Games with Real Footage



Image and Video Generation

Deep 
Generative 
Models for 

Image/Video  
Generation 
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with/without 
3D Modeling 



Pose-based Human Image Generation

• Siarohin, et al.,  “Deformable GANs for Pose-based Human Image Generation”, CVPR18

• Siarohin, et al.,  “Appearance and Pose-Conditioned Human Image Generation using Deformable GANs”, PAMI, 

43(4):1156-1171, April 2021

https://github.com/AliaksandrSiarohin/pose-gan

https://github.com/AliaksandrSiarohin/pose-gan


Pose-based Human Image Generation

Ground Truth

Prediction

Real or Fake



Pose-based Human Image Generation

(a) typical “rigid” scene generation task: the local structures of conditioning and 
output image local structures are well aligned

(b) deformable-object generation task: the input and output are not spatially aligned



Pose-based Human Image Generation



Pose-based Human Image Generation

We need a deformation model



Pose-based Human Image Generation

• For each specific body part, compute an affine transformation fh

• Use fh to “move” the corresponding feature-map content



Pose-based Human Image Generation

Target 
Stream

target pose
heat map 

using gaussian 
blurring

feature maps 
“shuttled” by skip 
connections from 

the Hb stream

feature maps directly 
obtained using up-

convolutional filters 
applied to the 

previous-layer maps



Pose-based Human Image Generation

Target 
Stream

Source 
Stream

deformed 
tensors d(F) 

“shuttled” by  
deformable 

skip 
connections 
from  (xa,Ha) 

stream

• joint locations in xa and Ha are spatially aligned (by construction)
• in Hb the joint locations may be far apart from xa

• Hence, Hb is not concatenated with the other input tensors



Pose-based Human Image Generation

Target 

Stream

Source 

Stream



xa Target pose GT  Baseline DSC Full

Qualitative results on the Market-1501 dataset

Conditional Image Generation



xa Target pose GT Baseline DSC Full

Qualitative results on the DeepFashion dataset



Badly generated images
• errors of the pose estimation

• ambiguity of the pose estimation

• rare object appearance

• rare poses



Image Animation

• Siarohin, et al., “Animating Arbitrary Objects via Deep Motion Transfer”, CVPR19

• Siarohin, et al., “First Order Motion Model for Image Animation”, NeurIPS19

https://github.com/AliaksandrSiarohin/first-order-model

https://github.com/AliaksandrSiarohin/first-order-model


Image Animation: Appearance or Motion Transfer?

Appearance transfer
Detect pose in each frame of the driving video

Apply our pose-base image generator with the source image and each 
detected pose

Problems: requires a detector, does not work when the shapes of the object are 
different  (ie. short to tall persons) => Use Unsupervised Transfer Motion

1 8  /  3 1



Image Animation with MOviNg KEYpoints 

1 8  /  3 1

-

Monkey-Net



Image Animation with MOviNg KEYpoints 

1 8  /  3 1

-

Again, we have an alignment problem

Monkey-Net



Image Animation with MOviNg KEYpoints 

1 8  /  3 1

• Monkey-Net has a motion-specific keypoint detector Δ, a motion prediction network M, 
and an image generator G (reconstructs the image x′ from the keypoint positions Δ(x) and 
Δ(x′)); Optical flow computed by M is used by G to handle misalignments between x and x′

• The model is learned with a self-supervised learning scheme

-

Monkey-Net



Image Animation: Motion Prediction

1 8  /  3 1

From the appearance of the first frame and the keypoints motion, the network M predicts a 
mask for each keypoint and the residual motion



Image Animation Generation

At testing time the model generates a video 
with the object appearance of the source 
image but with motion from driving video: 
• transfer the motion between the  source 

image and each driving frame
• provide the generator the relative  

difference between keypoints





Motion-supervised Co-Part Segmentation

• Siarohin, et al., “Motion Supervised Co-Part Segmentation”, ICPR20

https://github.com/AliaksandrSiarohin/motion-cosegmentation

https://github.com/AliaksandrSiarohin/motion-cosegmentation


Self-supervised Co-Part Segmentation

Leverage motion info to train a segmentation network without annotation 
• At training, use frame pairs (source and target) extracted from the same video => predict 

segments in target that can be combined with a motion representation between the two 
frames to reconstruct the target frame

• At inference, use the trained segmentation model  to predict object parts segments 



Self-supervised Co-Part Segmentation

• Segmentation Module predicts the segmentation maps YS and YT, and the  affine 
motion parameters

• Reconstruction Module: (1) computes a background visibility mask V and an optical 
flow F; (2) reconstructs the target frame XT by warping the features of the source frame 
XS and masking occluded features



Video Generation



Playable Video Generation

• Menapace, et al., “Playable Video Generation”, CVPR21

https://github.com/willi-menapace/PlayableVideoGeneration

https://github.com/willi-menapace/PlayableVideoGeneration


Playable Video Generation

• Consider a set of videos depicting an agent acting in an environment
• Differently from other methods that use frame by frame action annotations, we assume 

no annotation is present



Playable Video Generation

• Learn a model that represents the observed environment. 
• Allow the user to input actions to the model through a controller at test time



• Produce a video where the agent acts according to the actions specified by the user

Playable Video Generation



Architecture

• First we sample an input sequence and use an encoder network to extract frame 
features



Architecture

• Use then pairs of successive features to infer the action that was performed by the 
agent in the corresponding transition using an action network



• Given the frame features and the action, a recurrent model is used to produce features 
representing the successive state

Architecture



Architecture

• The successive state is translated back to an image using a decoder network



Architecture

• For extra supervision, we encode back the produced frame using the encoder and the 
action network



Architecture

• Impose different self supervision losses on the frames, the frame features and the 
produced actions: use a mutual information maximization loss between actions and 
reconstructed actions as the main driving loss for action learning



Architecture

• The model is then unrolled over the whole sequence



ft etEmb

ft+1 et+1Emb

Action Network

• The action network first encodes the frame features using a Multi Layer Perceptron to 
produce two embeddings



etEmb

ft+1 et+1Emb

dt

Action Network

• We take the difference between these embedding as the representation of the 
transition between two frames: action direction dt

ft



dtt-SNE plot of

Action Network

• When visualized, the learned space of action 
directions is a representation of the different 
types of transitions that are observed in the 
training videos

f
t

etEmb

ft+1 et+1Emb

dt



MLP at

Which action is done
● Left
● Right

Action Network

f
t

etEmb

ft+1 et+1Emb

dt

dtt-SNE plot of

• Use an MLP to assign a label to each point dt: the 
high-level action associated to the current frame

• Use of action variability embeddings to ensure a 
well-posed reconstruction loss on the frames



MLP at

vt

Expectation of distance from cluster centroids

Action Network

f
t

etEmb

ft+1 et+1Emb

dt

dtt-SNE plot of

Which action is done
● Left
● Right

How the action is done
● Speed
● Limb movement

• For each dt compute the expectation of its 
distance from the cluster centroids: variability 
embedding vt => the specific way in which an 
action is performed



Results

• We learn a wide range of actions. The meaning of actions is consistent, independently 
from the starting frame the action is applied to



Action Interpolation

• At inference, we typically pose vt = 0 and let the user specify actions at at each time step
• vt can also be obtained from an action direction dt that moves between the centroids of 

different actions: it is possible to generate a variety of different movement directions, eg. 
diagonal movements





Playable Environments

• Menapace, et al., “Playable Environments: Video Manipulation in Space and Time”, CVPR22

https://github.com/willi-menapace/PlayableEnvironments

https://github.com/willi-menapace/PlayableEnvironments


Playable Environments

• Learn a model that represents the observed environment
• Allow the user to input actions to the model through a controller at test time



Playable Environments



Playable Environments



Playable Environments



Framework



Framework Characteristics

1. Playability



1. Playability

2. Multi Object

3. Deformable Objects

Framework Characteristics



1. Playability

2. Multi Object

3. Deformable Objects

4. Camera Control

Framework Characteristics



1. Playability

2. Multi Object

3. Deformable Objects

4. Camera Control

5. Style Control

6. Robustness

Framework Characteristics



Learned Actions



Learnable Game Engines (LGEs)

• Menapace, et al., “Plotting Behind the Scenes: Towards Learnable Game Engines”, arxiv 2023

https://learnable-game-engines.github.io/lge-website/

https://learnable-game-engines.github.io/lge-website/


Related Work



Method

Two separately trained components: 



Method



Synthesis Module

• NERF-based: renders the state of the environment from a 
given viewpoint 

• A composition of NERFS, one for each object

• The model is trained using L2 and perception 
reconstruction losses



Animation Module
• Diffusion-based: produces sequences of states based on 

conditioning signals
• Values: pose, location, velocity of a player or the ball

• Natural language: what a player is doing



Animation Module
• The conditions are optional: the model can be used at 

inference time for different task by changing the structure 
of the conditioning



Animation Module
• The model is based on a transformer architecture where 

a frozen T5 encodes the natural language conditioning

• A mask is specifying which part of the input serves as 
conditioning and which needs to be predicted



Animation Module

• Finally, the model is trained to predict noise applied to 
the sequence



Controllable Synthesis



Text-Controllable Animation

Learnable Game Engines: 

• Understand physics and game logic

• Can receive action inputs expressed with natural language



Text-Controllable Animation



How the player is moving

How the ball is hit

Where the ball is sent



Designing Game Strategy



Making the player win: 

• Reconstruct the scene

Designing Game Strategy

• Devise winning actions

• Animate players

• Render the results



Designing Game Strategy



Original video = Bottom player loses
½ Original video + “The [TOP] player 

doesn’t catch the ball”= 

Bottom player wins

Designing Game Strategy



Play LGEs as Videogames



Play Against an Opponent



LGE Opponent Control



Constrain generation using: 

• Desired values of the environment states

• Actions expressed with natural language

Director’s Mode



Director’s Mode

First Frame Last Frame



Director’s Mode



Director’s Mode

The conditioning is 
flexible, e.g., give multiple 
actions to constrain the 
solution 



LGE Datasets

• 7112 video sequences at 1920x1080@25fps
• 15.5 hours of videos
• 1.12M fully annotated frames
• 25.5k unique captions

Tennis

• 61 video sequences at 1024x567@20fps
• 1.2 hours of videos
• 68.5k fully annotated frames
• 1.24k unique captions

Minecraft



LGE Datasets



Synthesis Model Evaluation

Learnable Game Engines Playable Environments

• Increased resolution
• No checkerboard artifacts 



Synthesis Model Evaluation

Learnable Game Engines Playable Environments

• Increased resolution
• No checkerboard artifacts 



Animation Model Evaluation

Learnable Game Engines Playable Environments

• Higher quality and higher frame rate sequences
• Better scene dynamics



Beyond Playable Environments

• Can we generate large scenes with manipulable objects inside?

• Can we do that without object localization and camera calibration?

• This environment representation can be used to model complex games with 
many objects and large environment



Music-Guided Dance Video Synthesis



DanceGAN



Music-Guided Dance Video Synthesis





Where Are We Going Now …

● Incorporating 3D information

● Modeling complex interactions between actors and 

between actors and the scene

● Cross-modal seamless integration between text, audio, 

and visual information

● More attention to privacy and deep fakes detection

● …
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