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The purpose of science writing is not explaining
what you did or what you learned,
but rather what you want your audience to
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Abstract—Compatible features enable the direct comparison of old and new learned features allowing to use them interchangeably
over time. In visual search systems, this eliminates the need to extract new features from the gallery-set when the representation
model is upgraded with novel data. This has a big value in real applications as re-indexing the gallery-set can be computationally
expensive when the gallery-set is large, or even infeasible due to privacy or other concerns of the application. In this paper, we propose
CoResS, a new training to learn that are ible with those previ learned, ling on the
stationarity of the features as provided by fixed classifiers based on polytopes. With this solution, classes are maximally separated in
the representation space and maintain their spatial configuration stationary as new classes are added, so that there is no need to learn
any mappings between representations nor to impose pairwise training with the previously learned model. We demonstrate that our
training procedure largely outperforms the current state of the art and is particularly effective in the case of multiple upgrades of the
training-set, which is the typical case in real applications.

Index Terms—Deep Convolutional Neural Network, Representation Learning, Compatible Learning, Fixed Classifiers.
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Title

The title is the calling card of the work

Avoid:

* Non-significant words and phrases (e.g. basically, kind of,
actually, furthermore...

* Unnecessary prepositions or articles (e.g. due to the fact that,
the field of, for the purpose of, that, the...)

* Introductory phrases (e.g., a study of...)

The title should:
* Include keywords that summarize the content of the work

* Not be too generic, but informative, and precise. Hinting at the
conclusions of the work allows for an informative title

* Be concise

 Attract the reader's attention....Personally, | don't like titles that
aim to surprise
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Highly important sections

Abstract: write it last. Do an exercise of

Abst ract an d extreme synthesis. Write motivations and
. contributions of your research. Only most
Con Cl usions important elements of how you obtain your
results

Conclusions: write it just before the abstract.
Do not make a report of the sections. Just
summarize your achievements and add
criticisms. Perspectives are important if
any...Don’t be concise



Introduction

Define the significance of the problem you intend to address

Describe what are the deficiencies or controversies in the
current literature

Put a few references, just make an overview of SoA. Reference
just the most recent literature, with the exception of those
articles that represent milestones in the field. ~ The reviewer
doesn’t care if you read a lot of papers...

Provide a clear and precise explanation of the aim of the study.
Put it in the last paragraph...

Don’t present, analyze, or discuss the results. You would
reduce the reader's curiosity. Just highlight your contributions.



In the final version

1 INTRODUCTION

ATURAL intelligent systems learn from visual experi-

ence and seamlessly exploit such learned knowledge
to identify similar entities. Modern artificial intelligence
systems, on their turn, typically require distinct phases to
perform such visual search. An internal representation is
first learned from a set of images (the truining-sel) using
Deep Convolutional Neural Network models (DCNNs) [1],
[21 [3], [#] and then used to index a large corpus of images
(the gallery-set). Finally, visual search is obtained by identify-
ing the closest images in the gallery-set to an input query-se!
by comparing their representations. Successful applications
of learning feature representations are: face-recognition [5],
[6L [7L [5], [9]. person re-identification [10], [11], [12], [13],
image retrieval [14], [15], [16], and car re-identification [17]
among the others.

In the case in which novel data for the training-set
and/or more recent or powerful network architectures be-
come available, the representation model may require to be
upgraded to improve its search capabilities. In this case, not
only the query-set but also all the images in the gallery-set
should be re-processed by the upgraded model to generate
new features and replace the old ones to benefit from such
upgrading. The re-processing of the gallery-set is referred to
as re-indexing (Fig. 1).

For visual search systems with a large gallery-set, such as
in surveillance systems, social networks or in autonomous
robotics, re-indexing is clearly computationally expensive
[1£] or has critical deployment, especially when the working
system requires multiple upgrades or there are real-time
constraints. Re-indexing all the images in the gallery-set can
be also infeasible when, due to privacy or ethical concerns,
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Fig. 1. Upgrading the DCNN representation modal with novel data,
typicaly requires the gallery-set to be re-ndexad. Leaming compatible
rapresentations allows to compare the newly lamed reprasentation of
an Input query-sat with the old reprasentation of the gallary-set, thus
aliminating its computationally Intensive re-indexing.

the original gallery images cannot be permanently stored
[19] and the only viable solution is to continue using the
feature vectors previously computed. In all these cases,
it should be possible to directly compare the upgraded
features of the query with the previously leamed features of
the gallery, i.e., the new representation should be compatible
with the previously learned representation.

Learning compatible representation has recently re-
celved increasing attention and novel methods have been
proposed in [158], [20], [21], [22], [23], [24]. Differently from
these works, in this paper we address compalibility lever-
aging the stationarily of the learned internal representation.
Stationarity allows to maintain the same distribution of the

features over time so that it is possible to compare the fea-
tures of the upgraded representation with those previously
learned. In particular, we enforce stationarity by leveraging
the properties of a family of classifiers whose parameters
are not subject to learning, namely fixed classifiers based on
regular polytopes [25] [26] [27], that allow to reserve regions
of the representation space to future classes while classes
already learned remain in the same spatial configuration.
The main contributions of our research are the following:

1) We identify stationarity as a key property for com-
patibility and propose a novel training procedure
for learning compatible feature representations via
stationarity, without the need of learning any map-
pings between representations nor to impose pair-
wise training with the previously learned model. We
called our method: Compatible Representations via
Stationarity (CoReS).

2) We introduce new criteria for comparing and eval-
uating compatible representations in the case of
sequential multi-model upgrading.

3) We demonstrate through extensive evaluation on
large scale verification, re-identification and re-
trieval benchmarks that CoReS improves the current
state-of-the-art in learning compatible features for
both single and sequential multi-model upgrading.

In the following, in Sec. 2, we discuss the main literature
on compatible representation learning and highlight the
distinguishing features of our solution. In Sec. 3, we present
in detail the problem of learning compatible representations
and define new criteria and metrics for compatibility eval-
uation in sequential multi-model upgrading. In Sec. 4, we
present our solution for learning compatible representations
by exploiting feature stationarity. In Sec. 5, we evaluate our
solution against state-of-the-art methods on different bench-
mark datasets and network architectures and demonstrate
its superior performance in learning compatible represen-
tations. Finally, in Sec. 6, we perform an extensive ablation
study.




Don’t anticipate complex concepts with partial and
obscure sentences

Either take room to explain properly or (preferred)
raise expectation
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stationarity on the learned internal representation. Stationar-
ity allows features’ distribution not to change under time
shift so that the current learned features can be directly
compared with the old ones. We argue that the stationary
properties of the feature representation, emerged in our pre-
liminary exploration [26], are crucial for sequential learning
of feature compatibility. In particular, our training method-
ology learn stationarity based on two main properties of
a certain family of classifiers in which the parameters are
not subject to learning (i.e., fixed). The first property allows
learning stationary features that exhibit strong performance
in achieving compatibility; the second one allows reserving
a dedicated representation space to future/unseen classes
that further promote stationarity when upgrading the rep-
resentation with novel classes. We extensively evaluate the
compatible features learned by our training procedure on
large-scale verification and identification benchmarks. We
specifically evaluate the single and the sequential multi-
model upgrading obtaining a large relative improvement
over previous state-of-the-art. We called our method Com-
patible Representations via Stationarity (CoReS).




Paper body

What may be clear to the researcher who conducted
the study may not be clear to the reader

Comment the literature in detail within a separate
section where comparing your research you can
enhance the interpretation of your results

Put motivations of your work at the very beginning.
Don’t let the reader wandering through the paper:
let him/her understand what you present and why

Both the reader and reviewer want to immediately
understand the results of the research conducted by
the author



Out of place

Put consequential subjects close each other

In the body of the draft

32 Compatibility Evaluation
For the evaluation of feature compatibility, we refer to the
criteria recently introduced in [19], that we briefly report in
the following.

A compatible representation model must be at least as
good as the old one in clustering images from the same
class and separating those from different classes. A new
representation model Gy is therefore compatible with an
old representation model ¢4 if:

dist (e (60), fo1a (60)) < dist (Bora (%), Bua(x2)
V() € {(9) |y = 9}
and @
dist (e (50), fo1a(60))  dist (Gora(x.), ba(x.)
V() € {(0) [ ya # 9},

where x, and x, are two input samples and dist(-,-) is
a distance in feature space. Since it constrains all pairs of
samples, Eq. 2 is therefore considered inadequate for true
characterization and it is relaxed to the following Empirical
Compatibility Criterion:

M (85w &) > M(650, #1a)s €}
where M is a quality metric based on dist(-, -). The notation
M (¢S, #%4) underlines that the upgraded model ey is
used to extract the feature vectors F from the query-set
images Io, while the old model ¢ola is used to extract the
features Fg from the gallery-data /g, and that the metric M
is used o evaluate the performance from the two feature

rformance value is referred to as cross-fest. The
m M(¢°.d,¢9 ) is referred to as self-test as it evaluates
the case in which both query Fo and gallery Fy features
are extracted with gou. The underlying intuition is that if
the performance of using the feature vectors obtained with
the previous models with the upgraded query features (i.e.,
cross-test) is better than the performance with the features
sxtracted from the old model (i, self-est) then the system
is leamning compatible representations. That is, the new
training data improves the representation without breaking.
the compatibility with the previously learned model.

To evaluate the relative improvement gained by a new
learned compatible representation with respect to an old
one, [19] further defines the following Update Gain:
M (88, 0) = M (85 90)
M (¢.,.,m Fen) — M (03, 95)”
where ., is the model learned according to the joint
training and re-indexing strategy which can be considered
as the upper bound of the best achievable performance.
Eq. 4 quantifies the gain produced by the learned compatible
representation with respect to the one leamned by the upper
bound.

T (6 65) = @

4 PROPOSED METHOD

41 Motivations

It is well known that: (1) features can be learned reliably
in different architectures when trained on a common dataset
and (2) the subspaces so learned are common to different

3 pages later
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al Compatibility Criterion:
M(62,65) > M(63.65)
with i >j,

10)
i=12, 0
J=12
here ¢; and ¢, refer to two different models such that
is learned before ¢‘ The model ¢, is mmpah.ble wnlh

¢he model ¢;, when the cross-test between ¢; and &; it
Jgreater than the self-test of the model ¢. Fig. 4 lustrates
the Multi-model Empirical Compatibility Criterion, where
are the representation models, the black
st indiente the sequence of models and the gray arrows
represent the compatibility tests. The cross-tests involve a

‘pair of models, while the self-tests a single one.

Eq. 10 allows defining the compatibility matrix, in which
rows represent new models and columns represent old
models. The compatibility matrix C is a square triangular
‘matrix defined as:

M(92,95)
M(9F,09) M(98,65)

an

M(6R.08) M(of,¢§) - M(ef.65)

The value Cy; evaluates the metric M on the model ¢;
to extract the query Q and on the model ¢, to extract
the gallery §. Elements on the main diagonal, i = j, are
the self-tests, while the elements off-diagonal, i > J, are
the cross-tests. While showing compatibility performance
across upgrade steps, matrix C' can be used to provide a
scalar metric to quantify the global sequential compatibility.
In particular, we define the Average Compatibility (AC) as the
‘number of times that Eq. 10 is verified with respect to all its
possible occurrences:

Ac= T(T_l)§§l(c,, >0y). 2)

where 1(-) denotes the indicator function. This metric is
also independent of the number of the learning steps T.. We
further define the average of the entries of the compatibility
‘matrix as:

) I
M:WEEC‘,, a3)

This metric captures the overall accuracy M achieved under
compatible training.

When representation models are sequentially learned in 7'
steps, we generalized Eq, 3 to the following Multi-model

Don’t let the reader forget what you explained before
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3 COMPATIBILITY EVALUATION

We indicate with Ig = {x;}/*; and Fg = {fi}}¥, respec-
tively the set of images and their features in the gallery-
set G. The gallery-set G might be grouped into a num-
ber of classes or identities L according to a set of labels
¥ = {y:}~,. We assume that the features Fy; are extracted
using the representation model ¢yq : RP? — R? that
transforms each image x € R” into a feature vector f € R?,
where d and D are the dimensions of the feature and the
image space, respectively. Analogously, we will refer to Ig
and Fg respectively as the set of images and their features in
the query-set Q. The model ¢4 is trained on a training-set
Tora and used to perform search tasks using a distance dist :
R? x R? - R, to identify the closest images to the query
images Io. As novel images X' become available, a new
training-set Tyew, = To1aUA is created and exploited to learn
anew model @y, : RP — R? that improves (i.e., upgrades)
the ¢o1q model. Our goal is to design a training procedure
to learn a compatible model ¢new so that any query image
transformed with it can be used to perform search tasks

M (of.45) M (of.4f) m(8%.45) (o2.6)

95,45
(#5.0f) M (o.5)

u(o.67)

Fig. 2. Multi-model Empirical Compa(ibility Criterion (Eq. 5): representa-
tion models ¢; with i = 1, 2 , T are sequentially trained. Gray arrows
self and t with T =

new is therefore compatible with an old representation
model ¢olq if:
dist(Gnew (Xu), Pota(xy)) < dist(dora(Xu), Gola(%v))
V(,0) € {(w,0) |yu = w0}
and (O]
dist(Pnew (Xu), Pota(xy)) = dist(dora(Xu), Gola(xv))
V(u,v) € {(“:”) [yu # yv}v
where x, and x, are two input samples and dist(-,-) is a
distance in feature space. Since it constrains all pairs of sam-
ples, Eq. 1 is relaxed to the following Empirical Compatibility
Criterion:

M(6Rr $51a) > M (830, 650a), @
where M is a metric used to evaluate the performance based
on dist(-, -). The notation M (<, ¢4) underlines that the
upgraded model @new is used to extract feature vectors Fo
from query images Ig, while the old model ¢q is used
to extract features Fg from gallery images Ig. This perfor-
mance value is referred to as cross-test. Correspondingly,
M (484, 6%4) evaluates the case in which both query and
gallery features are extracted with ¢,1q and is referred to
as self-test. The underlying intuition of Eq. 2 is that model
new is compatible with ¢,1q when the cross-test is greater
than the self-test, i.e., by using the upgraded representation
for the query-set and the old representation for the gallery-
set the system improves its performance with respect to the
previous condition.

To evaluate the relative improvement gained by a new
learned compatible representation, the following Update
Gain has been defined:

( ¢ ld) _ ( ncw’ old) M(¢Sd¥¢§]d)
Frow 00) = 3130 Fun) — M (9900 85,)

where M ($2.,,,%,,,) stands for the best accuracy level we
can achieve by re-indexing the gallery-set with the new

3

against the gallery-set directly without re-ind

ion [18] and can be considered as the upper

ie.
without computing Fg = {f € R? |f = ¢pew(X) VX € Ig}

3.1 Compatibility Criterion

In [18], a general criterion to evaluate compatibility was
defined. According to this, a new and compatible represen-
tation model must be at least as good as its previous version
in clustering images from the same class and separating
those from different classes. A new representation model

bou.nd of the best achievable performance.

3.2 Multi-step Compatibility Criterion

In real world applications, multi-step upgrading is often
required, i.e., different representation models must be se-
quentially learned through time, in multiple upgrade steps.
At each step t, the training-set is upgraded as:

Ti=Ti1UX, (€]

being X; the new data and 7;_; the training-set at step £ — 1.
In the multi-step upgrading case, we define the following
Multi-model Empirical Compatibility Criterion as follows:

M(62,6F) > M(¢2,6f) V' >t
witht' € {2,3,....,T}andt € {1,2,...,T - 1}

where ¢y and ¢, are two different models such that ¢ is
upgraded before ¢/, T' is the number of upgrade steps and
M the metric used to evaluate the performance. Model ¢/
is compatible with ¢, when their cross-test is greater than
the self-test of ¢; for each pair of upgrade steps. Fig. 2
illustrates the Multi-model Empirical Compatibility Crite-
rion, where {¢1, ¢2, ..., 1} are the representation models,
black arrows indicate the model upgrades and gray arrows
represent self and cross-tests.

In order to assess multi-model compatibility of Eq. 5 for a
sequence of T" upgrade steps, we define the following square
triangular Compatibility Matrix C'

M(o2.09)
M(92,¢7) M(42,65)

(©)

M(o2,¢) M(¢£,65) - M(6%,06%)

where each entry Cj; is the performance value according
to metric M, taking model ¢; for the query-set Q and
model ¢; for the gallery-set G. Entries on the main diagonal,
i = j, represent the self-tests, while the entries off-diagonal,
i > j, represent the cross-tests. While showing compatibility
performance across multiple upgrade steps, matrix C' can
be used to provide a scalar metric to quantify the global
multi-model compatibility in a sequence of upgrade steps.
In particular, we define the Average Multi-model Compatibility
(AC) as the number of times that Eq. 5 is verified with
respect to all its possible occurrences, independently of the
number of the learning steps:

T i1

Ac 7o o 2 (G > G, )

i=2 j=1

where 1(-) denotes the indicator function.
Finally, we define the Average Multi-model Accuracy (AM)
as the average of the entries of the Compatibility Matrix:

AMfT(T_'_l ZZQ] ®)

i=1j=1

to provide an aggregate value of the accuracy metric M
under compatible training.
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Class-incremental Learning (CiL). CiL sequentially in-
creases the number of classes to be learned by the model
over time [35], [36], [37]. Although it might look similar to
sequential learning of compatible features, the main focus
of CiL is reducing catastrophic forgetting [38] (i.e., the ten-
dency of a model to forget previously learned information
upon learning new information). Compatible representation
learning differs from CiL in two important aspects: (1) the
new model is not required to be initialized as the old model
and (2) the model has access to the whole data during the

Be clear and brief: use the period as a unit of
measure that should not be exceeded

Avoid:

Excessively long and complex sentences, rich in
subordinate phrases prolonged with which, and, that...

Abrupt transitions between topics

Use of doubt forms with would, could, might....
Parentheses that interrupt the flow of discourse
Repeating the same thing twice or more...



Be stylish in writing: the choice of words and
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Avoid:
* Redundant and ambiguous terms
* Neologisms that are not recognized in the dictionary
* Excessive use of passive verbs
* Use of the first person
* Use of pronouns in a chain
* Use of adverbs (e.g., absolutely, evidently, naturally...)
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Fig. 4. Overview of the Iraining procedure of CoReS based on leature staionarity showing: (a) fixed classifier with class prototypes [w, X | with
evidence of those reserved for Touy and the upgrade dasses A (both create T, ), and those reserved for future classes, (b) dass protolypes and
ther parameters =, xg, ... 1y (Daramelers are the coordinate vertices of the regular polytope that defines the fixed classifier); (¢) two-dmensional
representation of the fealure space generaled by the fixed classifier. The colored point clouds represent the learned features. Prototypes of the
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they are pushed oul from the margin.
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captions

T T T T T T

-50 -25 0 25 50 -50 -25 0 25 50

(@) (b)

Fig. 2. Training the LeNet++ network initialized from a previously learned
model (i.e., fine tuning) using the MNIST dataset. To visualize features,

Long ca ptions are ||ke the output size of the last hidden layer is reduced to two. Colored
cloud points are features from the test-set and colored lines represent
su b sections classifier prototypes. (a): Learning is performed with a training-set 7514

consisting of the first five classes of the MNIST dataset. (b): Learning
by fine tuning Tnew = To1a U {brown-class-data}. The new class deter-
mines the effect of varying the spatial configuration of the representation
changing the subtended angles between features (e.g., ¢ # ¢’).

Fig. 3. Learning with incremental fine-tuning with MNIST dataset for 2D
representation. Colored cloud points represent features from the test-
set and gray lines represent classifier prototypes. (a) Initial configuration
(5 classes); (b) Training by fine-tuning (adding the brown-class). The
addition of the new class modifies the spatial configuration and angles
between features.
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writing a new paper

Be h um ble The authors were very proud of their previous
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works in the new paper
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