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CoReS: Compatible Representations
via Stationarity

Niccolò Biondi, Federico Pernici, Matteo Bruni, and Alberto Del Bimbo, Senior Member, IEEE

Abstract—Compatible features enable the direct comparison of old and new learned features allowing to use them interchangeably
over time. In visual search systems, this eliminates the need to extract new features from the gallery-set when the representation
model is upgraded with novel data. This has a big value in real applications as re-indexing the gallery-set can be computationally
expensive when the gallery-set is large, or even infeasible due to privacy or other concerns of the application. In this paper, we propose
CoReS, a new training procedure to learn representations that are compatible with those previously learned, grounding on the
stationarity of the features as provided by fixed classifiers based on polytopes. With this solution, classes are maximally separated in
the representation space and maintain their spatial configuration stationary as new classes are added, so that there is no need to learn
any mappings between representations nor to impose pairwise training with the previously learned model. We demonstrate that our
training procedure largely outperforms the current state of the art and is particularly effective in the case of multiple upgrades of the
training-set, which is the typical case in real applications.

Index Terms—Deep Convolutional Neural Network, Representation Learning, Compatible Learning, Fixed Classifiers.
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1 INTRODUCTION

NATURAL intelligent systems learn from visual experi-
ence and seamlessly exploit such learned knowledge

to identify similar entities. Modern artificial intelligence
systems, on their turn, typically require distinct phases to
perform such visual search. An internal representation is
first learned from a set of images (the training-set) using
Deep Convolutional Neural Network models (DCNNs) [1],
[2], [3], [4] and then used to index a large corpus of images
(the gallery-set). Finally, visual search is obtained by identify-
ing the closest images in the gallery-set to an input query-set

by comparing their representations. Successful applications
of learning feature representations are: face-recognition [5],
[6], [7], [8], [9], person re-identification [10], [11], [12], [13],
image retrieval [14], [15], [16], and car re-identification [17]
among the others.

In the case in which novel data for the training-set
and/or more recent or powerful network architectures be-
come available, the representation model may require to be
upgraded to improve its search capabilities. In this case, not
only the query-set but also all the images in the gallery-set
should be re-processed by the upgraded model to generate
new features and replace the old ones to benefit from such
upgrading. The re-processing of the gallery-set is referred to
as re-indexing (Fig. 1).

For visual search systems with a large gallery-set, such as
in surveillance systems, social networks or in autonomous
robotics, re-indexing is clearly computationally expensive
[18] or has critical deployment, especially when the working
system requires multiple upgrades or there are real-time
constraints. Re-indexing all the images in the gallery-set can
be also infeasible when, due to privacy or ethical concerns,
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Firenze, 50139, Firenze, Italy. E-mail: name.surname@unifi.it

Fig. 1. Upgrading the DCNN representation model with novel data,
typically requires the gallery-set to be re-indexed. Learning compatible
representations allows to compare the newly learned representation of
an input query-set with the old representation of the gallery-set, thus
eliminating its computationally intensive re-indexing.

the original gallery images cannot be permanently stored
[19] and the only viable solution is to continue using the
feature vectors previously computed. In all these cases,
it should be possible to directly compare the upgraded
features of the query with the previously learned features of
the gallery, i.e., the new representation should be compatible

with the previously learned representation.
Learning compatible representation has recently re-

ceived increasing attention and novel methods have been
proposed in [18], [20], [21], [22], [23], [24]. Differently from
these works, in this paper we address compatibility lever-
aging the stationarity of the learned internal representation.
Stationarity allows to maintain the same distribution of the
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features over time so that it is possible to compare the fea-
tures of the upgraded representation with those previously
learned. In particular, we enforce stationarity by leveraging
the properties of a family of classifiers whose parameters
are not subject to learning, namely fixed classifiers based on
regular polytopes [25] [26] [27], that allow to reserve regions
of the representation space to future classes while classes
already learned remain in the same spatial configuration.

The main contributions of our research are the following:

1) We identify stationarity as a key property for com-
patibility and propose a novel training procedure
for learning compatible feature representations via
stationarity, without the need of learning any map-
pings between representations nor to impose pair-
wise training with the previously learned model. We
called our method: Compatible Representations via
Stationarity (CoReS).

2) We introduce new criteria for comparing and eval-
uating compatible representations in the case of
sequential multi-model upgrading.

3) We demonstrate through extensive evaluation on
large scale verification, re-identification and re-
trieval benchmarks that CoReS improves the current
state-of-the-art in learning compatible features for
both single and sequential multi-model upgrading.

In the following, in Sec. 2, we discuss the main literature
on compatible representation learning and highlight the
distinguishing features of our solution. In Sec. 3, we present
in detail the problem of learning compatible representations
and define new criteria and metrics for compatibility eval-
uation in sequential multi-model upgrading. In Sec. 4, we
present our solution for learning compatible representations
by exploiting feature stationarity. In Sec. 5, we evaluate our
solution against state-of-the-art methods on different bench-
mark datasets and network architectures and demonstrate
its superior performance in learning compatible represen-
tations. Finally, in Sec. 6, we perform an extensive ablation
study.

2 RELATED WORKS

Compatible Representation Learning. The term backward

compatibility was first introduced in [28] for the classification
task. They noted that although machine learning models can
increase on average their performance with the availability
of more training data, upgrading the model could result
into incorrect classification of data correctly classified with
the previous model. As a consequence, the trust in machine
learning systems is severely harmed. Compatibility in classi-
fication has been further investigated in [29], [30], [31], [32].

However, learning compatible representations is sub-
stantially different from learning compatible classifier mod-
els, although both follow the same general principle. As a
distinct hallmark, learning compatible representations di-
rectly imposes constraints in the semantic distance of the
feature representation. In [21], [22], [23], [24] the problem of
feature compatibility was addressed by learning a mapping

between two representation models so that the new and old
feature vectors can be directly compared. The mapping in
[21] was learned through a three-step procedure: adversarial

learning for reconstruction, feature extraction and regres-
sion to jointly optimize the whole model. In [22], the map-
ping was learned through an autoencoder by minimizing
the distance between the two representation spaces and
the reconstruction error. In [23], the mapping was learned
from a residual bottleneck transformation module trained
by three different losses: classification loss, similarity loss
between feature spaces, and KL-divergence loss between the
prototypes of the classifiers. In [24], the estimated mapping
aligns the class prototypes between the models. To further
encourage compatibility, the method also reduces intra-class
variations for the new model. All these methods do not
completely avoid the cost of re-indexing of the gallery-set
as, at each upgrade, the old feature vectors must be re-
processed with the learned mapping. Therefore, they are not
suited for sequential multi-model learning and large gallery-
sets. Differently from these works, we avoid learning spe-
cific space-to-space mappings for each previous upgraded
representation model and completely avoid the cost of re-
indexing also in the case of multiple upgrades.

By avoiding to learn space-to-space mappings, our work
has some affinity with the Backward Compatible Training
(BCT) [18] method for compatible learning that represents
the current state-of-the-art. BCT grounds on pairwise com-
patibility learning to obtain compatible features. It takes ad-
vantage of an influence loss that biases the new representa-
tion in a way that it can be used by both the new and the old
classifier. During learning with novel data, the old classifier
is fixed and the prototypes of the new classifier align with the
prototypes of the old classifier. In the case of multi-model
upgrading, such pairwise cooperation supports compatibil-
ity only indirectly (i.e., through transitive compatibility). In
fact, for a two-model upgrading, i.e., when the model �1

is upgraded to �2 and �2 to �3, �3 is compatible with �1

thanks to the compatibility of �3 with �2 and of �2 with
�1. BCT has been extended in [20], where small and large
representation models are taken into account for the query
and the gallery-set, respectively. Differently from BCT our
method is not based on pairwise compatibility learning and
does not use previous classifiers which might be incorrectly
learned. Instead, we learn a representation that is directly
compatible to all the previous representations by following
a training strategy that only leverages feature stationarity.

A different compatible representation learning scenario,
referred to as asymmetric metric learning, was addressed
in [33]. Large network architectures are used for the gallery-
set and smaller architectures for queries without considering
new data for the training-set.

Compatibility was implicitly studied also in [34], [35] in
which representation similarity between two networks with
identical architecture but trained from different initializa-
tions was evaluated.
Neural Collapse. Our method is based on the concept
of learning stationary and maximally separated features
using the d-Simplex fixed classifier introduced in [26] and
[27]. In this classifier, weights are not trainable and are
determined from the coordinates of the vertices of the
d-Simplex regular polytope. The goal of learning stationary
and maximally separated features has similarities to the
Neural Collapse phenomenon described in [36]. This phe-
nomenon, which can be further explored in [37], shows that

In the final version
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being Xt the new data and Tt�1 the training-set at step t�1.
In the multi-step upgrading case, we define the following
Multi-model Empirical Compatibility Criterion as follows:
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where �t0 and �t are two different models such that �t is
upgraded before �t0 , T is the number of upgrade steps and
M the metric used to evaluate the performance. Model �t0

is compatible with �t when their cross-test is greater than
the self-test of �t for each pair of upgrade steps. Fig. 2
illustrates the Multi-model Empirical Compatibility Crite-
rion, where {�1,�2, . . . ,�T } are the representation models,
black arrows indicate the model upgrades and gray arrows
represent self and cross-tests.

In order to assess multi-model compatibility of Eq. 5 for a
sequence of T upgrade steps, we define the following square
triangular Compatibility Matrix C :
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where each entry Cij is the performance value according
to metric M , taking model �i for the query-set Q and
model �j for the gallery-set G. Entries on the main diagonal,
i = j, represent the self-tests, while the entries off-diagonal,
i > j, represent the cross-tests. While showing compatibility
performance across multiple upgrade steps, matrix C can
be used to provide a scalar metric to quantify the global
multi-model compatibility in a sequence of upgrade steps.
In particular, we define the Average Multi-model Compatibility

(AC) as the number of times that Eq. 5 is verified with
respect to all its possible occurrences, independently of the
number of the learning steps:

AC =
2

T (T � 1)

TX

i=2

i�1X

j=1

1
⇣
Cij > Cjj

⌘
, (7)

where 1(·) denotes the indicator function.
Finally, we define the Average Multi-model Accuracy (AM )

as the average of the entries of the Compatibility Matrix:

AM =
2

T (T + 1)

TX

i=1

iX

j=1

Cij (8)

to provide an aggregate value of the accuracy metric M
under compatible training.

4 LEARNING COMPATIBLE REPRESENTATIONS

It is well known that for different initializations a neural
network learns the same subspaces but with different ba-
sis vectors [34], [35]. Therefore, training the network from
scratch with different randomly initialized weights does

not provides similar representations in terms of subspace
geometry. This result excludes compatibility between two
independently trained representation models.

𝜑

(a) (b)

Fig. 3. Learning with incremental fine-tuning with MNIST dataset for 2D
representation. Colored cloud points represent features from the test-
set and gray lines represent classifier prototypes. (a) Initial configuration
(5 classes); (b) Training by fine-tuning (adding the brown-class). The
addition of the new class modifies the spatial configuration and angles
between features.

The alternative of learning with incremental fine-tuning
(i.e., weights are initialized from the previously learned
model) appears to be a more favorable training procedure
to compatibility. However, and perhaps counterintuitively,
this does not help to keep the same subspace representation
geometry regardless of the changes made.

We provide direct evidence of this aspect of feature
learning in Fig. 3 with a toy problem. We trained the
LeNet++ architecture [49] on a subset of the MNIST dataset
setting the output size of the last hidden layer to two (so
resulting in a two-dimensional representation space). The
classifier weights were unit normalized and biases were
set to zero to encourage learning cosine distance between
features ( [50], [51]) and the cross-entropy loss was used. The
model was initially trained with five classes (red, orange,
blue, purple, and green clouds in Fig. 3(a)); then a new
class (brown cloud in Fig. 3(b)) was included in the training-
set and the new model was trained by fine-tuning the old
model on the new training-set of six classes. As the new
class is included in the training-set and the representation
is fine-tuned, the features of the old classes change their
spatial configuration and the mutual angles between clas-
sifier prototypes change as well. This is due to the fact
that linear classifiers maximize inter-class distance to better
discriminate between classes [49]. As a consequence, the
cosine distance comparison between old and new features
cannot be guaranteed. The same effect holds for any number
of classes and feature space dimension.

To limit such spatial configuration changes and therefore
achieve feature compatibility, our approach learns station-
ary features exploiting the properties of fixed classifiers in-
troduced in [27] that we briefly recall in the next subsection.

4.1 Learning Stationary Features with Fixed Classifiers

In [52], [53], a DCNN model with a fixed classification
layer (i.e., not subject to learning) initialized by random
weights was shown to be almost equally effective as a train-
able classifier with substantial saving of computational and
memory requirements. In fixed classifiers, the functional
complexity of the classifier is fully demanded to the internal
layers of the neural network. As the parameters of the
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proposed [19], [21], [22], [23], [24], [25]. Differently from
these approaches, we address compatibility by encouraging
stationarity on the learned internal representation. Stationar-
ity allows features’ distribution not to change under time
shift so that the current learned features can be directly
compared with the old ones. We argue that the stationary
properties of the feature representation, emerged in our pre-
liminary exploration [26], are crucial for sequential learning
of feature compatibility. In particular, our training method-
ology learn stationarity based on two main properties of
a certain family of classifiers in which the parameters are
not subject to learning (i.e., fixed). The first property allows
learning stationary features that exhibit strong performance
in achieving compatibility; the second one allows reserving
a dedicated representation space to future/unseen classes
that further promote stationarity when upgrading the rep-
resentation with novel classes. We extensively evaluate the
compatible features learned by our training procedure on
large-scale verification and identification benchmarks. We
specifically evaluate the single and the sequential multi-
model upgrading obtaining a large relative improvement
over previous state-of-the-art. We called our method Com-
patible Representations via Stationarity (CoReS).

In Sec. 2, we discuss the related works and summarize
our contributions. Sec. 3, Sec. 3.2, and Sec. 4.3 present the
details of the problem, the background, the motivation, and
the proposed training procedure, respectively. In Sec. 5, we
compare CoReS with state-of-the-art methods and finally in
Sec. 6 we conduct an extensive ablation study.

2 RELATED WORKS

Compatible Representation Learning. The term backward
compatibility has been firstly introduced in [27] for classi-

fication tasks. They noted that although machine learning
models can increase on average their performance through
the availability of more data, the new classification results
may differ from the correct ones learned by the previ-
ous model. As a consequence, the trust in machine learn-
ing systems is severely harmed. An example is over-the-
air model upgrades in autonomous driving systems that
change the user expected behavior of the car. Compatibility
in classification has been further developed in [28], [29], [30]
[31]. Although the general principle is the same, learning
compatible representation models is substantially different
from learning compatible classifier models since in learning
compatible classifiers, no constraints are directly imposed in
the semantic distance of the feature representation.

Recent works on compatible representation learning [19],
[21], [22], [23], [24], [25] underline how modern visual search
systems often need to be upgraded with novel data. In
particular, [22], [23], [24], [25] address the problem of feature
compatibility by learning a mapping between two represen-
tation models so that new and old feature vectors can be
directly compared. The mapping in [22] is learned by a
procedure consisting of three stages: adversarial learning for
reconstruction, feature extraction and regression to jointly
optimize the whole model. In [23] the mapping is learned
through an autoencoder by minimizing the errors between
the two representation spaces and the reconstruction errors.

In [24] the learned mapping is a residual bottleneck trans-
formation module trained by three different loss: classifi-
cation loss, similarity loss between feature spaces, and KL-
divergence loss between the prototypes of the classifiers.
In [25] the estimated mapping aligns the class prototypes
between the models. To further encourage compatibility,
the method also reduces intra-class variations for the new
model. These methods do not completely prevents the cost
of re-indexing since the learned mappings require to be
evaluated every time the dataset is upgraded and are there-
fore not suited to sequential learning and/or large gallery-
set. For example, the ResNet-101 architecture is one order
slower that the mapping proposed in [22], therefore when
the size of the gallery increases by an order of magnitude it
is equivalent to re-index the images.

Differently from these works, by leveraging stationary
features, we avoid learning specific space to space mappings
for each previous upgraded representation model. The train-
ing strategy we propose learns a compatible representation
to all the previous upgraded representations. The advantage
is to completely avoid the cost of re-indexing and make
the proposed method particularly suitable for sequential
learning. Our work shares the same goal of Backward
Compatible Training (BCT) [19]. BCT takes advantage of an
influence loss that bias the solution towards one that can be
used by the old classifier. The old classifier is fixed during the
learning with the novel data and cooperates with the new
representation model. Cooperation is achieved by aligning
the prototypes of the new classifier with the prototypes of
the old fixed one. If the previously learned classifier does
not sufficiently separate the learned features, the current
classifier cannot improve this separation because it follows
the previous one which can no longer be learned. Moreover,
pairwise cooperation achieves sequential compatibility only
indirectly through transitive compatibility (i.e., �3 is indi-
rectly compatible with �1 since �3 is compatible with �2

that is compatible with �1). Since our method is not based
on pairwise learning, it does not use previous classifiers
which may be incorrectly learned. BCT has been extended
in [21] by taking into account small and large representation
models for the query and the gallery, respectively.

Compatibility in a broader perspective has been implic-
itly studied in [32], [33] in which representation similar-
ity between two networks with identical architecture but
trained from different initialization has been quantitatively
evaluated. The work in [34] avoids re-indexing the gallery,
but the new model used for queries is not trained on more
data. Their work is motivated by the scenario where the
gallery is indexed by a large model and the queries are
extracted with smaller models as for example in mobile
devices.
Class-incremental Learning (CiL). CiL sequentially in-
creases the number of classes to be learned by the model
over time [35], [36], [37]. Although it might look similar to
sequential learning of compatible features, the main focus
of CiL is reducing catastrophic forgetting [38] (i.e., the ten-
dency of a model to forget previously learned information
upon learning new information). Compatible representation
learning differs from CiL in two important aspects: (1) the
new model is not required to be initialized as the old model
and (2) the model has access to the whole data during the

In the draft
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being Xt the new data and Tt�1 the training-set at step t�1.
In the multi-step upgrading case, we define the following
Multi-model Empirical Compatibility Criterion as follows:
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where �t0 and �t are two different models such that �t is
upgraded before �t0 , T is the number of upgrade steps and
M the metric used to evaluate the performance. Model �t0

is compatible with �t when their cross-test is greater than
the self-test of �t for each pair of upgrade steps. Fig. 2
illustrates the Multi-model Empirical Compatibility Crite-
rion, where {�1,�2, . . . ,�T } are the representation models,
black arrows indicate the model upgrades and gray arrows
represent self and cross-tests.

In order to assess multi-model compatibility of Eq. 5 for a
sequence of T upgrade steps, we define the following square
triangular Compatibility Matrix C :
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where each entry Cij is the performance value according
to metric M , taking model �i for the query-set Q and
model �j for the gallery-set G. Entries on the main diagonal,
i = j, represent the self-tests, while the entries off-diagonal,
i > j, represent the cross-tests. While showing compatibility
performance across multiple upgrade steps, matrix C can
be used to provide a scalar metric to quantify the global
multi-model compatibility in a sequence of upgrade steps.
In particular, we define the Average Multi-model Compatibility

(AC) as the number of times that Eq. 5 is verified with
respect to all its possible occurrences, independently of the
number of the learning steps:

AC =
2

T (T � 1)

TX

i=2

i�1X

j=1

1
⇣
Cij > Cjj

⌘
, (7)

where 1(·) denotes the indicator function.
Finally, we define the Average Multi-model Accuracy (AM )

as the average of the entries of the Compatibility Matrix:

AM =
2

T (T + 1)

TX

i=1

iX

j=1

Cij (8)

to provide an aggregate value of the accuracy metric M
under compatible training.

4 LEARNING COMPATIBLE REPRESENTATIONS

It is well known that for different initializations a neural
network learns the same subspaces but with different ba-
sis vectors [34], [35]. Therefore, training the network from
scratch with different randomly initialized weights does

not provides similar representations in terms of subspace
geometry. This result excludes compatibility between two
independently trained representation models.

𝜑

(a)

𝜑 𝜑′

(b)

Fig. 3. Learning with incremental fine-tuning with MNIST dataset for 2D
representation. Colored cloud points represent features from the test-
set and gray lines represent classifier prototypes. (a) Initial configuration
(5 classes); (b) Training by fine-tuning (adding the brown-class). The
addition of the new class modifies the spatial configuration and angles
between features.

The alternative of learning with incremental fine-tuning
(i.e., weights are initialized from the previously learned
model) appears to be a more favorable training procedure
to compatibility. However, and perhaps counterintuitively,
this does not help to keep the same subspace representation
geometry regardless of the changes made.

We provide direct evidence of this aspect of feature
learning in Fig. 3 with a toy problem. We trained the
LeNet++ architecture [49] on a subset of the MNIST dataset
setting the output size of the last hidden layer to two (so
resulting in a two-dimensional representation space). The
classifier weights were unit normalized and biases were
set to zero to encourage learning cosine distance between
features ( [50], [51]) and the cross-entropy loss was used. The
model was initially trained with five classes (red, orange,
blue, purple, and green clouds in Fig. 3(a)); then a new
class (brown cloud in Fig. 3(b)) was included in the training-
set and the new model was trained by fine-tuning the old
model on the new training-set of six classes. As the new
class is included in the training-set and the representation
is fine-tuned, the features of the old classes change their
spatial configuration and the mutual angles between clas-
sifier prototypes change as well. This is due to the fact
that linear classifiers maximize inter-class distance to better
discriminate between classes [49]. As a consequence, the
cosine distance comparison between old and new features
cannot be guaranteed. The same effect holds for any number
of classes and feature space dimension.

To limit such spatial configuration changes and therefore
achieve feature compatibility, our approach learns station-
ary features exploiting the properties of fixed classifiers in-
troduced in [27] that we briefly recall in the next subsection.

4.1 Learning Stationary Features with Fixed Classifiers

In [52], [53], a DCNN model with a fixed classification
layer (i.e., not subject to learning) initialized by random
weights was shown to be almost equally effective as a train-
able classifier with substantial saving of computational and
memory requirements. In fixed classifiers, the functional
complexity of the classifier is fully demanded to the internal
layers of the neural network. As the parameters of the
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Fig. 2. Training the LeNet++ network initialized from a previously learned
model (i.e., fine tuning) using the MNIST dataset. To visualize features,
the output size of the last hidden layer is reduced to two. Colored
cloud points are features from the test-set and colored lines represent
classifier prototypes. (a): Learning is performed with a training-set Told
consisting of the first five classes of the MNIST dataset. (b): Learning
by fine tuning Tnew = Told [ {brown-class-data}. The new class deter-
mines the effect of varying the spatial configuration of the representation
changing the subtended angles between features (e.g., ' 6= '0).

networks; however, the specific learned subspace basis vec-

tors are substantially different [32], [33]. Therefore, training
CNNs from scratch with randomly initialized weights does
not provide similar representations in terms of subspace
geometry. This result excludes compatibility between two
independently trained representation models.

The alternative training procedure that appears to be
more favorable to compatibility is learning with Incremental

Fine Tuning (i.e., weights initialized from the previously
learned model). However, and perhaps counter-intuitively,
this does not help to obtain similar subspace representation
geometry suited for compatibility. With reference to Fig. 2,
we provide direct evidence of this intrinsic aspect of feature
learning (more in Sec. 5.5). In this toy problem, we trained
on a subset of the MNIST dataset the LeNet++ architecture
in two-dimensional representation space [39]. This is achieved
by setting the output size of the last hidden layer to two
(no dimensionality reduction techniques are applied). The
LeNet++ network is a modification of the LeNet [40] to
a deeper and wider network. We follow standard practice
in feature learning, classifier weights and biases are unit
normalized and set to zero, respectively, to encourage learn-
ing cosine distance between features [41], [42] and cross-
entropy loss with softmax output is minimized. For the
sake of simplicity, the training set is increased by adding
a new class so passing from five classes (Fig. 2(a)) to six
(Fig. 2(a)) Fig. 2(b). As can be noticed from the figures,
changes in the extracted features (colored point clouds)
are due to the inclusion of the novel class. Specifically,
as the new class (brown) is included in the training-set
and the representation fine-tuned, the features of the old
classes (red, orange, blue, purple, and green) change their
spatial configuration to accommodate the novel class. This
is due to the fact that linear classifiers maximize inter-
class distance to better discriminate between classes [39].
The consequence is that direct comparison between old and
new features, based for example on the cosine distance, is
not guaranteed to be determined by the same angle (i.e.,
' 6= '0). The same effect holds for any number of classes

and feature space dimension. To limit the spatial variation
effect of the features, and therefore achieve compatibility,
our approach learns stationary features exploiting the fixed
classifiers in introduced in [43] that we briefly recall in the
next subsection.

4.2 Learning Stationary Features with Fixed Classifiers
In [43] we presented a special class of fixed classifiers
where the weights of the classifier are fixed to values taken
from the coordinate vertices of regular polytopes. Regular
polytopes generalize in any number of dimensions regular
polygons, and reflect the tendency of splitting the available
space into approximately equiangular regions. There are
only three possible polytopes in a multi-dimensional feature
space with dimensions 5 and higher: the d-Simplex, the d-
Cube and the d-Orthoplex [44]. As the parameters of the
prototypes are non-trainable, only the feature vector direc-
tions align toward the directions of the classifier prototypes
and the trainable classifier is superseded by the previous
layers. We showed that with such classifiers, stationarity of
the embedding is naturally achieved and the representation
is maximally separated. Grounding on this result, differently
from the works in [22], [23], [24], [25] that learn external
mappings between representation spaces, we have defined
a new compatibility learning procedure that exploits the
stationary representation provided by the fixed classifier.
According to this, in our method the functional complexity
of learning compatible representations is fully demanded to
the internal layers of the neural network.

4.3 Compatible Training via Stationarity
Ideal stationarity implies that, the representation that will
be learned in the future is statistically indistinguishable from
that learned in the past, regardless of the number of model
upgrades performed. This implication has a direct effect on
the statistical properties of the representation and is the
basis of our compatible training procedure. In particular,
as the distribution of stationary features does not change
under time-shift, currently learned features can be directly

compared with the old ones. This property holds when
stationary training is performed with a fixed number of
classes for each upgrade. In the case in which the number
of classes is not fixed and novel classes are used to upgrade
the model, the effect shown in Fig. 2 is still present and must
be taken into account. We address this issue by preparing
the future representation space to be compatible with such
novel unseen classes. This is achieved by reserving them
dedicated regions of the compatible representation space by
learning from their false positive responses. To maintain
compatibility across model upgrades, the new class features
will be learned in the reserved regions without “moving”
the class features of the previously upgraded models. Re-
gion reservation is predisposed before training by incorpo-
rating in the fixed classifier a number of outputs that are not
assigned to labels. When labeled data is available to upgrade
the model, the labels are assigned to the outputs and model
training is performed. The remaining outputs not assigned
to any label continue to respond with false positives keeping
other regions of space reserved for further upgrades. Fig. 3
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