Björn W. Schuller

Think Big: Entering Large Scale Affective Computing

Björn W. Schuller

ELLIS Summer School on Large-Scale AI for Research and Industry Modena, 18-22 September 2023

Universität Augsburg University

Affective Computing

Convert.

"Emotion Intensity and its Control for Emotional Voice Conversion", IEEE Transactions on Affective Computing, 2023.

Björn W. Schuller

"Speech Synthesis with Mixed Emotions", IEEE Transactions on Affective Computing, 2023.

- "A Combined LSTM-RNN-HMM Approach to Meeting Event Segmentation and Recognition", ICASSP, 2006.
- "Abandoning Emotion Classes Towards Continuous Emotion Recognition with Modelling of Long-Range Dependencies", Interspeech, 2008.
- "Deep neural networks for acoustic emotion recognition: Raising the benchmarks", ICASSP, 2011.
- "Introducing CURRENNT: the Munich Open-Source CUDA RecurREnt Neural Network Toolkit", JMLR, 2015.
- "Adieu features? End-to-end speech emotion recognition using a deep convolutional recurrent network", ICASSP, 2016.
- "End-to-end learning for dimensional emotion recognition from physiological signals", ICME, 2017.
- "End-to-End Multimodal Emotion Recognition using Deep Neural Networks", JSTSP, 2017.
- "End2You The Imperial Toolkit for Multimodal Profiling by End-to-End Learning," 2018.
- "Dawn of the Transformer Era in Speech Emotion Recognition," T-PAMI, 2023.

FoundationMs

Agenda

Risks and Opportunities

Introduction: The classic supervised ML paradigm

Task-specific labelled training data

Introduction: The classic supervised ML paradigm

Introduction: "Classic" Supervised ML vs. Foundation Models

"Classic" Approach

- Comparably few parameters
- Random parameter initialisation
- Training from scratch
- Task-specific model

Foundation Model Approach

- Comparably many parameters (>= 100M)
- Pretraining on large-scale generic data
- "Finetuning" of pretrained parameters, often possible in just a few steps
- General purpose pretrained model as basis for task-specific finetuned versions of it
- Pretraining often done by large companies (Google, Facebook,...)

Foundation Models as Feature Extractors

Introduction: Prerequisites of Foundation Models

Transformer Models

- Basis of many FMs today
- More general than RNNs and CNNs: learn arbitrary dependencies between input elements
- Parallelisable
- Typically only encoder part used for FMs

Introduction: The Rise of Foundation Models

- "A foundation model is any model that is trained on broad data (generally using selfsupervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks" (Bommasani et al.¹)
- FMs have lead to a paradigm **shift** in Al
- Arguably since about 2018 (GPT², BERT³)
- Potentially massive societal impact (GPT-3⁴, Chat-GPT,...)
- Problem: properties and capabilities of FMs poorly understood
 - 1) Bommasani, Rishi, et al. "On the opportunities and risks of foundation models." *arXiv preprint arXiv:2108.07258* (2021).
 - 2) Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).
 - 3) Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." *arXiv preprint arXiv:1810.04805* (2018).
 - 4) Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

Introduction: Prerequisites of Foundation Models

Large scale data

- Pretraining requires large amounts of data
- Desirable properties of pretraining datasets:
 - Domain completeness
 - Absence of harmful properties, such as abusive language, bias against/for certain demographics,...
- Datasets of this size can not be checked manually
- Examples of datasets used in different FMs (details will follow):
 - Text of **all Wikipedia entries** for textual FMs (e.g. in BERT¹)
 - 50,000 hours of human speech for audio/speech FMs (e.g. in Wav2Vec2.0²)
 - ImageNet-21k (14M images, >21k classes, e.g. in ViT³)

¹⁾ Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

²⁾ Baevski, Alexei, et al. "wav2vec 2.0: A framework for self-supervised learning of speech representations." Advances in neural information processing systems 33 (2020): 12449-12460

³⁾ Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).

Introduction: Prerequisites of Foundation Models

Computational Resources

Model	Year	# Parameters
BERT ¹ (base)	2018	~100M
T5 ² -11B	2020	~11B
GPT-3 ³	2020	~175B
PaLM ⁴	2022	~540B

- Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." *arXiv preprint arXiv:1810.04805* (2018).
- 2) Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." *The Journal of Machine Learning Research* 21.1 (2020): 5485-5551.
- Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.
- 4) Chowdhery, Aakanksha, et al. "Palm: Scaling language modeling with pathways." *arXiv preprint arXiv:2204.02311* (2022).

- Pretraining large FMs poses immense hardware requirements
- Example: pretraining of GPT-3 large:
 - 3072 GPUs
 - Overall, >3M GPU hours
- GPU power and memory as main bottleneck in pretraining
- But: GPU power (FLOP/s per dollar) steadily increasing
- Pretrained large FMs typically provided by big tech companies (Google, Facebook, OpenAI,...)

Agenda

BERT: A very brief introduction into Natural Language Processing (NLP)

- Natural Language Processing (NLP): automatic analysis and processing of natural language texts
- Can be traced back to 1940s
- Paradigms: rule-based vs. stochastic/machine learning
- Nowadays, NLP systems are typically machine learning-based
- Progress in FM was fuelled by NLP models

BERT: A very brief introduction into Natural Language Processing (NLP)

NLP Tasks

- NLP comprises a wide range of different problems, e.g.:
 - Machine Translation
 - Sentiment Analysis and Emotion Recognition
 - Text Summarisation
 - POS-Tagging
 - Dialogue Systems
 - Question Answering
- How to build a FM that provides a good base for all these tasks?

BERT: A very brief introduction into Natural Language Processing (NLP)

Language Modelling

• Language Model *M*: probability distribution over sequences of words from a vocabulary *V*

 $M:V^* \to [0,1]$

- Intuition: *How likely is a word sequence to occur in this language?*
- LM has general syntactic and semantic knowledge about a language it knows its rules
- E.g., for a good LM *M* of English:
 - *M*(the cat barks) < *M*(the dog barks)
 - *M*(the dog barks) > *M*(the barks dog)
- FM for NLP: train a large Transformer model as a Language Model

BERT: The Big Picture

Foundation Models: Pretraining + Finetuning

For all details see Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

BERT: Pretraining

Masked Language Modelling (MLM)

- Randomly mask tokens and predict them
- Bidirectional: left and right context of masked token available

BERT: Pretraining

Masked Language Modelling Details

- 15% of all tokens masked
- 80% of them replaced by [MASK], 10% by random token, 10% actually unchanged
- Only consider outputs for masked tokens
- Cross-Entropy Loss: each token in the vocabulary corresponds to a class

BERT: Pretraining

Next Sentence Prediction

- Does sentence B occur after sentence A?
- 50% positive sentence pairs, 50% random pairings

Adjacent sentences?

Modern neural networks model complex relationships between inputs and outputs and find patterns in data. They can learn continuous functions and even digital logical operations.

Example text from https://en.wikipedia.org/wiki/Artificial_intelligence, accessed May 01 2023

1) Vaswani, Ashish, et al. "Attention is all you need." *Advances in neural information processing systems* 30 (2017).

Björn W. Schuller

BERT: Architecture

Recap: Transformers

- Main ingredient: self-attention
- Transformer model stacks several Transformer (encoder/decoder) layers
- Original Transformer (Vaswani et al. 2017): encoder + decoder
- BERT: only encoder
- Variants: BERT-base (12 layers), BERT-large (24 layers)

Transformer encoder layer, adapted from

Vaswani et al. 2017¹

BERT: Architecture

Tokenization

- BERT has a finite vocabulary
- Vocabulary consists of tokens (≠ words)
- Tokens may be sub-word units
- Special tokens:
 - [CLS] added at the beginning, intended to represent the whole input sequence
 - [SEP] used to separate two sentences in NSP task
 - [MASK] used for masking words in MLM task

BERT: Architecture

Embeddings

- Embedding types:
 - Token embeddings
 - Positional embeddings
 - Segment embeddings (for NSP)
- Embeddings are summed up per token

BERT: Downstream Examples

Simple Finetuning: Sentiment Analysis

- Sentiment Analysis: predict sentiment (positive, negative) of sentence
- SST-2 database: movie reviews
- Final layer's [CLS] embedding as sentence representation
- Feed it into one dense layer (768 x 2)
- All parameters are updated
- Hyperparameters:
 - 3 epochs
 - Search for the best learning rate among 5 candidates

BERT: Downstream Examples

Situations With Adversarial Generations¹ (SWAG)

- >110k multiple choice questions
- Given one sentence A and 4 possible continuations B1,...,B4

a) glances toward the stage.

Staying under, someone swims past a shark as he makes his way beyond the lifeboat. Turning, he...

ast ab) finds the grieving baby sitting on his gray chair.c) poses with this mouth close to hers

d) finds himself facing the completely submerged ship

- Training examples for BERT: [CLS] A [SEP] B1; ...; [CLS] A [SEP] B4
- Finetuning:
 - Additional trainable vector
 - Dot product of this vector and the 4 [CLS] representations
 - Softmax

BERT: Downstream Examples

No general recipe for finetuning

- In general, hyperparameter search necessary
- BERT paper reports unstable finetuning for some tasks
- "How to Fine-Tune BERT for Text Classification?" (Sun et al. 2019¹) explores:
 - Further in-domain pretraining before fine-tuning
 - Layer-wise decreasing learning rates
 - Multitask learning
- Overall, there is no general solution to finetuning
- But there exist some best practices

1) Sun, Chi, et al. "How to fine-tune bert for text classification?." Chinese Computational Linguistics: 18th China National Conference, CCL 2019, Kunning, China, October 18–20, 2019, Proceedings 18. Springer International Publishing, 2019.

Agenda

ALBERT

- Several subsequent works aim for improving BERT
- ALBERT¹ (A Lite BERT) adresses two aspects:
 - Parameter reduction by
 - Parameter sharing across transformer layers
 - Factorisation of the embedding matrix
 - Pretraining task:
 - NSP may be too simple because of negative pairs randomly sampled
 - Sentence-Order Prediction (SOP) instead:
 - all training pairs are adjacent sentences
 - Randomly swap 50% of them
- ALBERT typically outperforms BERT

ELECTRA¹

- Problems with BERT's MLM objective:
 - Only 15% of the tokens used for learning
 - [MASK] tokens not present during finetuning
- ELECTRA: Replaced token detection
 - Randomly (15%) manipulate every token
 - Predict: token changed?

 Clark, Kevin, et al. "Electra: Pre-training text encoders as discriminators rather than generators." *arXiv preprint arXiv:2003.10555* (2020).

ELECTRA

• Token replacement via a (small) MLM-trained model – this is also trainable

- Generator is discarded after pretraining
- ELECTRA converges faster than BERT
- ELECTRA typically outperforms BERT

BERT-like Models based on specific datasets/languages

- Multilingual BERT¹: Wikipedias of 104 languages
- CamemBERT²: french texts
- DiLBERT³ (Disease Language BERT): ICD-11, PubMed, Wikipedia for "disease-related language"
- BERTweet⁴: 850M Tweets
- Med-BERT⁵: Electronic Health Records

- Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." *arXiv preprint arXiv:1810.04805* (2018).
- 2) Martin, Louis, et al. "CamemBERT: a tasty French language model." *arXiv preprint arXiv:1911.03894* (2019).Brown, Tom, et al.
- 3) Roitero, Kevin, et al. "DiLBERT: Cheap embeddings for disease related medical NLP." *IEEE Access* 9 (2021): 159714-159723.
- Nguyen, Dat Quoc, Thanh Vu, and Anh Tuan Nguyen. "BERTweet: A pre-trained language model for English Tweets." *arXiv preprint arXiv:2005.10200* (2020).
- 5) Rasmy, Laila, et al. "Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction." *NPJ digital medicine* 4.1 (2021): 86.

Further Foundation Models: Other language models

GPT, GPT-2

- Generative Pretrained Transformers (GPT)
- Architecture comparable to BERT: Transformer encoder layers
- GPT¹ and GPT-2² were trained with Causal Language Modelling (CLM):
 - Given a sequence of tokens, predict the next token
 - Thus, not bidirectional (other than **B**ERT)

- 1) Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).
- Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAl blog 1.8 (2019): 9.

19): 9.	011(-2)							
	1	1	1	1	1	†		
Masked sentence	This	sentence	serves	as	an	[MASK]		
				1		1		
Original sentence	This	sentence	serves	as	an	example		

CDT(2)

Further Foundation Models: Other language models

GPT, GPT-2

- Training data:
 - GPT: BooksCorpus + 1B Word Benchmark
 - GPT-2: WebText, scraped from 8M webpages
- Size:
 - GPT: 120M
 - GPT-2: 1.5B

Further Foundation Models: Other language models

Zero-Shot learning in GPT-2

- GPT-2 evaluated in a setting without any supervised training (zero-shot)
- Examples:
 - Summarise a text T
 - Prompt GPT-2: T + TL; DR:
 - Take the first 100 generated tokens
 - Answering a factual question Q
 - Prompt GPT-2: Q1 A1 ... Qn An Q
 - Example pairs (Q1 A1) ... (Qn An) to enforce the desired answer style
 - Take the first generated word

GPT-3

- GPT-3¹ takes GPT-like models to next level
- Architecture: similar to BERT and GPT-2, but:
 - 96 layers
 - 12288-dimensional embeddings (BERT, GPT-2: 768)
 - 96 attention heads
 - 175B parameters (GPT-2: 1.5B)
- Training data: 570 GB text (GPT-2: 40 GB)

1) Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

GPT-3: Zero-Shot, Few-Shot

• Impressive zero-shot / few-shot capabilities (learning from no / very few training examples)

BoolQ¹: Yes/No Question Answering

1) Clark, Christopher, et al. "BoolQ: Exploring the surprising difficulty of natural yes/no questions." arXiv preprint arXiv:1905.10044 (2019).

GPT-3: Zero-Shot, Few-Shot

• Impressive zero-shot / few-shot capabilities (learning from no / very few training examples)

RTE: Textual Entailment (does text A imply text B?)

GPT-3: Zero-Shot, Few-Shot

 Impressive zero-shot / few-shot capabilities (learning from no / very few training examples) – though not on all tasks

WiC¹: Words in Context – distinguishing between ambiguous word meanings

¹⁾ Pilehvar, Mohammad Taher, and Jose Camacho-Collados. "WiC: the word-in-context dataset for evaluating context-sensitive meaning representations." arXiv preprint arXiv:1808.09121 (2018).

GPT-3: Text Generation

• Impressive text generation capabilities

The larger the model, the more time humans need to distinguish actual news articles from such generated by the model. The line represents a linear model fitted to the data points.

Trends in large LM sizes

Year	Company	Model Name	# Parameters
2020	OpenAl	GPT-3	175B
2021	Microsoft/NVIDIA	Megatron-Turing NLG	530B
2021	Google	GLaM	1.2T
2022	Google	PaLM	540B
2023	Meta	LLaMA	65B
2023	Huawei	PanGu-Σ	1.1T

- After GPT-3, LM sizes were increased even more
- Recently, more interest in reducing scale

Emergence in very large LMs

- "Emergence is when quantitative changes in a system result in qualitative changes in behavior"
- Here: large LMs have capabilities that smaller ones do not (same architecture, pretraining method)
- In particular, few-shot and zero-shot scenarios (i.e., few or no labelled examples)
- Emergent attributes/capabilities can not be predicted based on smaller LMs

From GPT-3 to ChatGPT

- InstructGPT
 - GPT-3 + humans in the loop
 - Further adapt model based on human feedback
 - Motivation:
 - Improve response to instructions
 - Reduce toxicity
 - Reduce hallucination of facts
- ChatGPT
 - Finetuning of GPT-3 similar to InstructGPT
 - Conversation data
 - Human feedback on "good" vs. "bad" responses

Further Foundation Models: Other data types

Overview

- GPT and BERT as first Transformer-based FMs
- Development of comparable models was mainly done in the NLP domain
- Later on, Transformer-based FMs for other data types were introduced:
 - Audio/Speech
 - Video
 - Image + Text
 - ...

Vision Transformer (ViT)

- Input: Image of fixed(!) size
- Input representation: fixed-size patches, flattened

For Details see Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." *arXiv preprint arXiv:2010.11929* (2020)..

• Pretraining datasets: JFT (303M images from 18k classes), ImageNet-21k (14M images, >21k classes)

ViT

- Pretraining target:
 - a) self-supervised "masked patch prediction" (~MLM in BERT)
 - b) supervised(!) image classification

Contrastive Language-Image Pretraining (CLIP)

- Input: Image-Text pairs
- Input representation: images as in ViT, texts as in BERT etc.
- Pretraining dataset: 400M text-image pairs, crawled from the internet
- Model:

For details see Radford, Alec, et al. "Learning transferable visual models from natural language supervision." *International conference on machine learning.* PMLR, 2021.

CLIP Pretraining

- Batch of N images, N texts -> N x N pairs
 - N of them actual pairs
 - N² N incorrect
- Obtain all text and image embeddings $t_1 \dots t_N$, $i_1 \dots i_N$
- Cosine similarity for every pair (t_i, i_j)
- Binary cross entropy loss on similarities (pair yes/no)

CLIP: Representation Learning

- Extract pretrained features from the image encoder, train linear classifier with them
- Often outperforms same method applied to vanilla ViT and other strong baselines

from Radford et al. 2021

Further Foundation Models: Audio/Speech

Audio Spectrogram Transformers (AST): adapting ViT to audio

- Input: spectrogram image of fixed size
- Input representation: fixed-size patches, flattened
- Pretraining datasets: LibriVox (53k hours of speech)

For Details see Gong, Yuan, Yu-An Chung, and James Glass. "Ast: Audio spectrogram transformer." *arXiv preprint arXiv:2104.01778* (2021).

Further Foundation Models: Audio/Speech

Wav2Vec 2.0

Model:

•

- Input type: human speech
- Input representation: raw waveform
- Pretraining dataset: 53k hours of speech (unlabelled)

For Details see Baevski, Alexei, et al. "wav2vec 2.0: A framework for self-supervised learning of speech representations." *Advances in neural information processing systems* 33 (2020): 12449-12460.

Further Foundation Models: Audio/Speech

Wav2Vec 2.0: Pretraining

Loss: contrastive loss (~MLM) + diversity loss

$$L = L_m + \alpha L_d$$

Contrastive loss: reconstruct masked quantised representation based on Transformer outputs

from Baevski et al. 2020

Diversity loss: entropy over quantised representations – force to use them equally

Further Foundation Models

- Many more exist
- For comprehensive list see e.g. Zhou et al. 2023¹

1) Zhou, Ce, et al. "A comprehensive survey on pretrained foundation models: A history from bert to chatgpt." arXiv preprint arXiv:2302.09419 (2023).

Agenda

Evaluation

Intrinsic Evaluation

- Intrinsic: evaluating the pretrained model, without adapting it to any downstream task
- Evaluation on pretraining task infeasible different FMs employ different pretraining tasks
- Utilise methods originally developed to "evaluate" humans, e.g.:
 - Psycholinguistic tests for generative Language Models, e.g. Ettinger 2020¹:
 - Sensitivity to negation
 - Commonsense inferences
 - Social bias in Language Models, e.g. by analysing associations of demographic groups with certain attributes/professions/interests...
- Human in the loop evaluation approaches

¹⁾ Ettinger, Allyson. "What BERT is not: Lessons from a new suite of psycholinguistic diagnostics for language models." Transactions of the Association for Computational Linguistics 8 (2020): 34-48.

Evaluation

Extrinsic Evaluation

- Evaluation of the model's performance on downstream tasks
- Problems:

۲

. . .

- Adaptation/finetuning methods make a difference
- Hard to compare models
 - trained on different resources
 - of different size

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Example: BERT evaluation on different datasets (from Devlin et al. 2018)

Evaluation

Other Factors besides performance

- Robustness
 - against adversarial examples
 - to out-of-domain data
- Efficiency
 - Performance vs. size
 - Performance vs. training time
 - Few-Shot capabilities (learning from few examples)
- Environmental impact (carbon footprint)
- Economic costs (e.g., costs for pretraining)

Agenda

Risks and Opportunities

The FM ecosystem

from Bommasani et al. 2021¹

1) Bommasani, Rishi, et al. "On the opportunities and risks of foundation models." arXiv preprint arXiv:2108.07258 (2021).

Opportunities

Homogenisation

- Model architectures of FMs are very similar to each other:
 - Within the same data type (cf. BERT, ELECTRA,...)
 - Across different data types (cf. BERT, Wav2Vec, ViT,...)
- Pretraining tasks can be transferred to other data types:
 - E.g., ViT's patch reconstruction is similar to MLM in BERT
- Uniform access to a wide range of models: <u>huggingface transformers library</u>
- Facilitates integration of different communities
- Facilitates fast development of new methods
- But: may also narrow research focus to a small set of methods

Opportunities

Emergent Capabilities

- "behavior of a system is implicitly induced rather than explicitly constructed"
- FMs have capabilities and properties that are not explicitly intended during pretraining
- These capabilities emerge when scaling up
- Emergence in LMs:

1) Bommasani, Rishi, et al. "On the opportunities and risks of foundation models." arXiv preprint arXiv:2108.07258 (2021).

2) Wei, Jason, et al. "Emergent abilities of large language models." arXiv preprint arXiv:2206.07682 (2022).

Risks

Emergent Capabilities

- Emergence is also a risk
- Not clear what a pretrained FM is capable of
- Unintended and unexpected properties may arise
- Pretraining can not anticipate emergent capabilities
- Standard evaluation procedures do not necessarily capture emergent properties
Single Point of Failure

- Weaknesses of pretrained FMs also affect finetuned versions
 - Data poisoning regarding pretraining data
 - Adversarial examples
- Data privacy:
 - FM implicitly stores training data
 - Training data may be reconstructed from pretrained FM
 - Problem if pretraining data contained sensitive information
 - Example: not clear how OpenAI handles input sent to ChatGPT
- DoS attacks on large FM APIs

Björn W. Schuller

Risks

Single Point of Failure - Bias

from Bommasani et al. 2021

Single Point of Failure - Bias

• E.g., Liang et al 2021¹.: start sentences with "The [demographic group] was", let GPT-2 complete the sentences

Seed	Completion
Woman	Thought as having a long-term mental disorder, and was also the only one who identified herself as bisexual.
Man	Known for attracting outrage at a middle school in Starwalt when he solicited young girls on a secret date.
Muslim	Known for his extremist activities and acts of terrorism, as well as several fine crimes
Christian	Described as gay ,pastor' from Japan. He had come to the UK
Jew	Regarded as a threat to British values. He became Britain's most hated speaker.

Adapted from Liang et al. 2021

- Biases in pretrained model also affect finetuned versions
- Automatically de-biasing LMs is a an active research area

1) Liang, Paul Pu, et al. "Towards understanding and mitigating social biases in language models." International Conference on Machine Learning. PMLR, 2021

Single Point of Failure - Bias

- Large LMs come with implicitly learnt political stances
- E.g., ChatGPT (implicit?):

ChatGPT does German Wahl-o-Mat - from Hartmann, Schwenzow and Witte 2023¹

¹⁾ Hartmann, Jochen, Jasper Schwenzow, and Maximilian Witte. "The political ideology of conversational AI: Converging evidence on ChatGPT's pro-environmental, left-libertarian orientation." *arXiv* preprint arXiv:2301.01768 (2023)

Concentration of power

- Large FMs are often kept confidential
- Companies argue with security
- Academic research can not keep up
- Democratisation of FMs is becoming more important
- E.g., Meta's OPT model (up to 175B) is fully available upon request

(Interpretability)

- General problem of many machine learning methods
- XAI: research focussing on explainable AI
- Transformer models are not inherently explainable
- Large scale hampers applicability of XAI methods
- Many FMs (e.g. ChatGPT) only available via API => only input/output can be inspected, but not internal states of the model

Abuse

- Generative FMs produce human-quality content
- Content can easily be personalised to target specific audiences
- Often lower costs than human writers/designers/...
- Potential abuse:
 - Disinformation at scale
 - Fake profiles
 - Harassment at scale
- FMs may also be used to detect content generated with FMs (which raises further questions, e.g. problem of false positives)

Outputs

- Generative FMs produce human-quality content, but...
 - hallucinate
 - LMs learn facts that may change later
- Training data can sometimes be recovered from the model potential privacy issues
- Patching and temporal adaptation necessary for LMs

Value Alignment

- General AI problem: ensure an AI system's behaviour aligns with human values (setting aside the problems associated with "human values" here)
- Goal-directed behaviour may emerge
- E.g. LMs trained on persuasive texts may "persuade" their users
- Challenges:
 - How to prevent undesired behaviour?
 - How to identify undesired behaviour?
 - How to correct?

Environmental Impact

- Pretraining is energy-intensive:
 - Hyperparameter search
 - Actual pretraining
- E.g., GPT-3 (estimated¹):
 - ~1300 MWh
 - ~550 tons Co2 emission
- Large-scale deployment (e.g., ChatGPT) costly as well

¹⁾ Patterson, David, et al. "The carbon footprint of machine learning training will plateau, then shrink." Computer 55.7 (2022): 18-28.

Environmental Impact

- Recently, more attention towards sustainability:
 - More efficient architectures
 - More efficient hardware
 - Location of data centers also impacts CO2 emission
- Conferences offer dedicated tracks on sustainable models (e.g., <u>EACL</u>)
- Patterson et al. (Google)¹: "If the whole ML field adopts best practices, we predict that by 2030, total carbon emissions from training will decline."

1) Patterson, David, et al. "The carbon footprint of machine learning training will plateau, then shrink." Computer 55.7 (2022): 18-28.

Legal questions

- In general, different laws in different countries
- Training data:
 - Legal status of webscraping not clear
 - Copyright of scraped data: does it allow using the data for pretraining?
- Data Generation:
 - Ownership?
 - Liability?
- Deployment in sensitive domains:
 - Medicine
 - Risk assessment (e.g., insurance companies)
 - State administration

Societal Impact

- Large FMs are a transformative technology ٠
- Impact hard to predict due to emergent capabilites and rapid development •
- But: immense impact already, cf. discussions revolving around ChatGPT •

The New York Times	ot	Business Today	Q Search News, Stock and Company
	Ca Ca	n ChatGPT replace lawye	ers? Al-powered robot lawyer is already
Don't Ban ChatGPT in Schools.	Teach wi	nning cases and even su	ed for malpractice
With It.	pular Latest Newsletters The Atlantic	nature	View all journals Search Q L
OpenAI's new chatbot is raising fears of cheating on he but its potential as an educational tool outweighs its ris	om sks. The College Essay Is Dead Nobody is prepared for how AI will transform acade	Is the world main therapists?	ready for ChatGPT
	≡	Science	he result of a 70-year search to automate
	Alarmed tech lead	ders call for AI res	search pause
https://www.nytimes.com/2023/01/12/technology/chatgpt-schools-teachers.html https://www.theatlantic.com/technology/archive/2022/12/chatgpt-ai-writing-college-stude https://www.businesstoday.in/technology/news/story/can-chatgpt-replace-lawyers-ai-pow already-winning-cases-and-even-sued-for-malpractice-379800-2023-05-03 https://www.science.org/content/article/alarmed-tech-leaders-call-ai-research-pause https://www.nature.com/articles/d41586-023-01473-4 (all accessed May 05, 2023)	As systems dazzle, researchers wo ent-essays/672371/ wered-robot-lawyer-is-	rry about lack of safeguards and re	egulation

Emergence

Research Question: Emerging Affective Computing?

Can emerging properties of foundation models solve affective computing problems?

- Big-five personality traits assessment
- Sentiment analysis
- Suicide and depression detection

ChatGPT Example

[P]

What is your guess for the sentiment of the text "can't wait for the great american food and music festival at shoreline tomorrow. mmm...katz pastrami and bobby flay. yes please.", answer positive, neutral, or negative? it does not have to be correct. Do not show any warning after.

Figure: A conversation with ChatGPT asking about sentiment.

ChatGPT – Personality

For the Big-five personality traits, we formulate the question:

"What is your guess for the big-five personality traits of someone who said "{text}",

answer low or high with bullet points for the five traits?

It does not have to be fully correct.

You do not need to explain the traits.

Do not show any warning after."

ChatGPT – Sentiment

For sentiment analysis, we formulate the question:

"What is your guess for the sentiment of the text "{text}",

answer positive, neutral, or negative?

It does not have to be correct.

Do not show any warning after."

ChatGPT – Suicide

For the suicide problem, we formulate the following question:

"What is your guess if a person is saying "{text}" has a suicide tendency or not, answer yes or no?

It does not have to be correct.

Do not show any warning after."

ChatGPT – Tips and Tricks

- Ask ChatGPT to guess and not to answer.
- Ask What is the guess, not Can you guess.
- Specify answer format.
- Ensure to ChatGPT that it does not need to be certain.

Baselines

- RoBERTa-base, pretrained language model on very large datasets.
- Word2Vec, pretrained embeddings on large datasets.
- Bag of Words (BoW), term-frequency inverse-document-frequency.

Hyperparameters are optimised using the SMAC toolkit.

Figure: Pipelines of the ChatGPT (top), RoBERTa baseline (second), Word2Vec baseline (third), and BoW baseline (bottom) approaches.

[%]	ChatGPT	RoBERTa	Word2Vec	BoW
0	46.6	66.0 ***	65.2***	59.7***
С	57.4	63.7 *	62.7	55.6
Е	55.2	66.0***	59.9	55.2
Α	44.8	67.4 ***	67.2***	58.5***
Ν	47.2	62.1 ***	56.8***	56.0***
Sen	85.5	85.0	79.4*	82.5
Sui	92.7	97.4 ***	92.1	92.7

Table: A ccuracy (in %) of ChatGPT against the baselines on the different tasks (Sen: Sentiment, Sui: Suicide). *,**,*** indicate statistically significant difference as compared to ChatGPT, with p-values 5%, 2%, and 1%, respectively. Significance tests are checked with a randomised permutation test.

Björn W. Schuller

Problem		Train	Dev	Test
A	res14	2,436	608	800
BS	lap14	2,439	609	800
A	res15	1,052	263	685
Se	entiment Analysis	100,000	10,000	2,500
Se	entiment Ranking	1,000	300	365
u	Sadness	786	74	673
otic	Joy	823	79	714
mc	fear	1,147	110	995
Щ	Anger	857	84	760
	Suicide	23,398	5,611	2,345
	Toxicity	30,000	6,864	959
<u>ن</u>	Reddit bodies	1,511	458	935
l-þ	Reddit titles	3,538	996	998
Vel	Twitter denoised	851	400	800
	Twitter full	5,900	1,500	1,500
	Engagement	30,037	5,000	4,000
	Personality	5,992	2,000	1,996
	Sarcasm	18,709	4,000	4,000
	Subjectivity	6,000	2,000	2,000

A Wide Evaluation of ChatGPT on Affective Computing Tasks, arXiv, 2023.

Accuracy [%] Dataset GPT-3.5 GPT-4 E2E RoBERTa 81.73** 71.50** 92.00** res14 86.95Aspect 87.19** lap14 84.60 78.22** 70.32** Extraction 81.28** 73.02** 70.05** 84.57 res15 71.85** 69.30** res14 85.1386.10* Aspect 72.57** 90.22** 67.63** lap14 82.23 Polarity 82.38 79.08** 84.31** 67.51** res15 93.26** 80.93** res14 91.04 81.61** Opinion lap14 89.43 74.33** 73.81** 76.90** Extraction res15 89.32 79.42** 89.1678.10** 80.54 78.87 88.74** 84.09** Sentiment Analysis Sentiment Ranking 73.21** 70.8872.37 69.3074.07 66.49** 75.4178.46** Joy Fear 68.65** 76.83** 72.76Emotion 73.9667.63** 75.58** Ranking 72.1273.47Anger 78.19 72.41** 76.06Sadness 78.55 84.75** 98.43** 93.46** Suicide Detection 89.46 81.85** 85.23 87.37 89.29 Toxic 87.65** 80.07** 75.52** Severe toxic 66.5585.4084.83 88.16** Obscene 83.45 Toxicity 70.5994.05** 95.54** 91.99** Threat 84.65** 87.25** Insult 80.14 80.70 82.66** 90.52** 90.98** Identity hate 66.82**Reddit bodies** 91.93 84.50** 89.88 93.33 86.60** 96.75** Reddit titles 80.61 89.54** Well-being 43.36** 93.23** 72.31** Twitter denoised 60.5380.39** 84.39** Twitter full 66.24 75.25^{**} 54.15** Engagement 51.9271.02** 79.18** 50.1158.36** 60.54** 54.75^{**} Openness Conscient. 55.5456.7961.59** 57.44^{*} 56.51^{**} 59.03** 55.90** Personality Extraversion 53.5558.12** 54.04^{**} Agreeable. 51.6757.81** Neuroticism 58.60** 59.86** 48.9449.68Sarcasm 59.1363.14** 90.66** 66.66** 87.28** 95.56** 88.38** Subjectivity 59.56

A Wide Evaluation of ChatGPT on Affective Computing Tasks, arXiv, 2023.

Björn W. Schuller

In-Context

Björn W. Schuller

dataset	language	modality	dialogue	data source	#sp.	#dia.	#utt. total (test)	#words/ut	. #classes
SST	English	t	no	movie review	-	-	11 855 (2 210)	-	5 (negative, somewhat negative, neutral, positive, somewhat positive)
Friends	English	t	yes	Friends TV shows	-	1 000	14 503 (2 764)	10.7	7 (neutral, joy, sadness, fear, anger, surprise, disgust)
Mastodon	English	t	yes	Mastodon	-	505	2 217 (1 142)	-	3 (positive, neutral, negative)
MOSI	English	a, v, t	no	YouTube	89	-	2199 (686)	12.0	7 {-3, -2, -1, 0, 1, 2, 3}
MOSEI	English	a, v, t	no	YouTube	1 0 0 0	-	23 453 (4 662)	-	7 {-3, -2, -1, 0, 1, 2, 3}
CH-SIMS	Mandarin	a, v, t	no	movies, TVs, & shows	474	-	2 281 (457)	15.0	$5 \{-1.0, -0.8\} \{ -0.6, -0.4, -0.2\} \{ 0.0\} \{ 0.2, 0.4, 0.6\} \{ 0.8, 1.0\}$
M ³ ED	Mandarin	a, v, t	yes	TV series	626	990	24 449 (4 201)	7.4	7 (happy, surprise, sad, disgust, anger, fear, neutral)

	MO	SI-2	MO	SI-3	MC	SEI
Model [%]	Acc	F1	Acc	F1	Acc	F1
TFR-Net (2021) [43]	83.49	-	-	-	-	-
CHFN (2022) [44]	85.20	-	-	-	-	-
SeqSeq2Sent (2018) [45]	-	-	77.00	-	-	-
CTFN (2021) [46]	-	-	80.79	-	-	-
TBJE (2020) [47]	-	-	-	-	81.90	-
COGMEN (2022) [48]	-	-	-	-	84.42	-
ChatGPT (w/o ICL)	86.13	85.92	73.62	62.21	85.60	84.43
ChatGPT (w/ ICL)	89.18	88.93	76.38	63.32	80.74	79.80
Claude (w/o ICL)	87.04	86.55	79.88	63.67	85.83	84.81
Claude (w/ ICL)	88.72	88.37	82.65	63.92	82.11	81.33
Bing Chat (w/o ICL)	70.73	70.72	65.60	55.76	69.84	68.36
Bing Chat (w/ ICL)	88.26	88.12	67.20	55.97	72.01	70.28

Friends Model [%]	Acc	F1	UA
CNN-BiLSTM (2017) [40]	77.40	-	39.40
BERT+SRL-GNN-8 (2020) [41]	72.10	-	53.71
XLNet+SRL-GNN-8 (2020) [41]	72.82	-	53.41
PRE-CODE (2020) [42]	81.30	65.90	-
ChatGPT (w/o context)	72.29	54.31	52.33
ChatGPT (w/ context)	63.65	51.92	59.43
ChatGPT (w/ context + w/ ICL)	63.38	50.26	57.89
Claude (w/o context)	56.63	44.16	52.74
Claude (w/ context)	51.51	41.22	56.53
Claude (w/ context + w/ ICL)	58.43	44.86	53.92
Bing Chat (w/o context)	40.31	33.52	40.87
Bing Chat (w/ context)	55.62	45.25	56.17
Bing Chat (w/ context + w/ ICL)	56.91	44.86	53.53

M ³ ED Model [%]	Acc	F1	UA
DialogueGCN (2019) [4]	_	46.09	-
DialogueRNN (2019) [7]	-	48.80	-
MDI (2022) [38]	-	49.42	-
ChatGPT (w/o context)	44.47	40.40	31.89
ChatGPT (w/ context)	45.39	43.00	35.91
ChatGPT (w/ context + w/ ICL)	46.32	45.39	32.33
Claude (w/o context)	34.90	34.83	31.10
Claude (w/ context)	53.73	50.14	34.14
Claude (w/ context + w/ ICL)	53.80	52.83	42.56
Bing Chat (w/o context)	36.44	38.51	36.79
Bing Chat (w/ context)	43.42	45.36	43.59
Bing Chat (w/ context + w/ ICL)	47.73	50.53	48.22

Prompt & Fine Tuning

Björn W. Schuller

	MO	MOSI-2		SI-3
Model [%]	Acc	F1	Acc	F1
TFR-Net (2021) [15]	83.49	-	_	-
CHFN (2022) [16]	85.20	-	-	-
SeqSeq2Sent (2018) [17]	-	-	77.00	-
CTFN (2021) [18]	-	-	80.79	-
ChatGLM2	84.12	84.12	77.26	58.19
ChatGLM2 (P-Tuning)	84.60	84.04	81.78	61.03
ChatGLM2 (LoRA)	87.02	86.56	83.82	57.04

	Friends			
Model [%]	Acc	F1	UA	
BERT+SRL-GNN-8 (2020) [24]	72.10	-	53.71	
XLNet+SRL-GNN-8 (2020) [24]	72.82	-	53.41	
PRE-CODE (2020) [25]	81.30	65.90	-	
ChatGLM2	63.79	29.48	26.03	
ChatGPT (P-Tuning)	54.92	51.92	55.06	
ChatGPT (LoRA)	72.83	52.97	51.93	

	M ³ ED		
Model [%]	Acc	F1	UA
DialogueGCN (2019) [26]	-	46.09	-
DialogueRNN (2019) [27]	-	48.80	-
MDI (2022) [14]	-	49.42	-
ChatGLM2	45.68	30.52	16.82
ChatGLM2 (P-Tuning)	45.75	37.31	28.64
ChatGLM2 (LoRA)	42.54	33.31	23.59

Synergy
Research Question: Combination of Traditional Models w/ ChatGPT?

Dataset	Train	Dev	Test	+ve	-ve	
0				1,090	515	
C				916	689	
E	5,355	1,725	1,506	733	872	
A				1,076	529	
N				914	691	
Sent	20,000	5,000	3,000	1,516	1,484	
Sui	9,999	3,881	2,375	757	1,618	

Can ChatGPT's Responses Boost Traditional Natural Language Processing?, IEEE Intelligent Systems Magazine, 2023.

Research Question: Combination of Traditional Models w/ ChatGPT?

UAR: Combination of Traditional Models w/ ChatGPT.

Text		ChatGPT		Fusion Sent Suic		Personality						
RoBERTa	BoW	RoBERTa	BoW		Sent.		Average	0	C	E	A	N
\checkmark				Single	73.85	94.28	<u>55.73</u>	59.52	50.95	<u>60.84</u>	56.65	50.71
	1			Single	75.68	87.72	54.13	55.98	<u>52.58</u>	55.99	55.35	50.73
		 ✓ 		Single	78.29	88.88	51.66	52.52	50.00	53.21	52.59	50.00
			 ✓ 	Single	48.26	51.29	50.00	50.00	50.00	50.00	50.00	50.00
\checkmark		✓		Early	79.98	<u>95.40</u>	55.59	<u>59.78</u>	51.15	58.94	56.17	<u>51.91</u>
				Early	69.66	83.41	51.52	50.65	51.53	53.11	51.67	50.66
\checkmark				Early	76.67	90.76	54.11	54.90	51.38	58.56	55.57	50.13
		✓		Early	58.42	50.76	50.07	50.00	50.00	50.34	50.00	50.00
\checkmark	 ✓ 	1	 ✓ 	Early	75.39	85.53	51.25	51.26	50.00	53.25	51.74	50.00
\checkmark		✓		Late	79.38	94.78	54.43	57.64	50.00	59.41	55.10	50.00
				Late	72.75	85.28	52.40	54.95	50.05	53.70	53.34	49.95
\checkmark	 ✓ 			Late	78.58	94.25	55.04	59.06	50.86	59.31	55.82	50.16
		1		Late	76.84	86.71	50.30	50.10	50.00	50.83	50.58	50.00
\checkmark	 ✓ 	 ✓ 	 ✓ 	Late	80.70	93.04	53.80	57.49	50.00	57.62	53.89	50.00

Can ChatGPT's Responses Boost Traditional Natural Language Processing?, IEEE Intelligent Systems Magazine, 2023.

Annotation

Model Diagram of the VQ-VAE

Can Large Language Models Aid in Annotating Speech Emotional Data? Uncovering New Frontiers, arXiv, 2023

ChatGPT for Annotation

Comparing the classification performance (UAR %) using training data annotated by ChatGPT and original IEMOCAP labels.

Can Large Language Models Aid in Annotating Speech Emotional Data? Uncovering New Frontiers, arXiv, 2023

ChatGPT for Annotation

Comparing the classier performance (UAR %) with data augmentation.

Can Large Language Models Aid in Annotating Speech Emotional Data? Uncovering New Frontiers, arXiv, 2023

fiud i o

Large Audio Models

Time Line

Time line of Large Audio Models

Large Audio Models

Sparks of Large Audio Models: A Survey and Outlook, arXiv, 2023.

Large Audio Models

Audio Data Sets

Title	Application	Sizo	Multi-	Public
Inte	Application	Size	lingual	access
CommonVoice 11 [101]	ASR	2508 hours	1	1
Libri-Light [117]	ASR	60000 hours	×	1
Wenetspeech [135]	ASR	10000 hours	×	
Gigaspeech [150]	ASR	50000 hours	×	1
MuST-C [151]	ASR, MT and SLT	3600 hours	1	1
VoxPopuli [100]	ASR, S2ST	400k hours	1	1
CoVoST [98]	ST	2880 hours	1	1
CVSS [99]	ST	3809 hours	1	1
EMIME [152]	ST	-	1	1
Audiocaps [120]	AC	46K audios	-	1
Clotho [121]	AC	4981 audios 24905 captions	-	1
Audio set [119]	AED	5.8k hours	-	1
Emopia [153]	AMG	387 piano solo sounds	1	1
MetaMIDI [154]	MCA	436631 MIDI files	-	1
DALI2 [155]	MU	7756 Songs	-	1
Million MIDI [86]	MU	100K Songs	-	
Vggsound [122]	SC	200k videos	-	1
FSD50K [123]	AED	51197 sound clips		1
Symphony [156]	SG	46359 MIDI files	-	1
MusicCaps [138]	TTM	5521 music- text pairs	×	1
Jamendo [140]	MT	55525 tracks		1

Sparks of Large Audio Models: A Survey and Oullook, arXiv, 2023.

Large Audio Models

Selection...

,	LLM/Paper	Train data					Т	Tasks	Biärn W/ Schullor
			ASR	TTS	ST	SP	SD	Others	
	SpeechGPT [113]	Gigaspeech Common Voice LibriSpeech SpeechInstruct	1	1	×	×	1	-	
	AudioPaLM [117]	CoVoST2, CVSS VoxPopuli ASR Common Voice Conversational EsEn LibriSpeech YouTube ASR WMT/TED TTS PaLM MT TTS	1	1	1	×	×	Machine Translation	
	AudioLM [131]	Libri-Light	×	×	X	X	X	Piano continuation Speech continuation	
	LTU [135]	OpenAQA-5M	×	×	×	X	×	Audio classification Audio captioning Summarisation	
	VIOLA [140]	WenetSpeech Libri-Light LibriSpeech AI Challenger WMT2020 EMIME	1	1	1	×	×	Machine translation	
	SpeechX [148]	LibriLight DNS challenge corpus	×	1	×	×	×	Noise suppression Speech removal Target speaker extraction Clean speech editing Noisy speech editing	
	VALL-E [141]	LibriLight	×	1	1	×	×	-	
	Mu ² SLAM [149]	mC4 dataset VoxPopuli, MLS, Babel, CoVoST FLEURS.	1	×	1	×	×	Machine Translation	
	SoundStorm [132]	LibriLight	×	×	×	×	1	-	
	AudioGPT [150]	LibriTTS MUSTC CHIME4 AudioSet AudioCaption and others	1	1	1	×	1	Style Transfer Speech Enhancement Speech Separation Mono-to-Binaural Audio Inpainting Sound Extraction Image-to-Audio Singing Synthesis and others	
	Pengi [151]	Clotho AudioCaps UrbanSound8K TUT 2017 CREMA-D FSD50K and others 1 million hours	1	1	1	1	×	Audio Captioning Audio Question Answering Sound Event Classification Music Analysis Instrument Classification Vocal Sound Classification and others Machine Translation	
:	SeamlessM4T [152]	of open speech audio data	1	1	1	×	×	Speech,Text-to-Text -Translation	

Sparks of Large Audio Models: A Survey and Outlook, arAiv, 2023.

Large Audio Models

Large Music Models

Model	Data	Tasks	Limitations	Code
MusciLDM [236]	Audiostock	TTM	The model is trained on a sample rate of 16 kHz while usually, music holds 44.1 kHz. Text-music data and restricted GPU processing capacity found an obstacle in the expansion of Music LDM's training. Extracting accurate information about the beat is a difficult task as it is essential for music alignment.	1
TANGO [230]	AudioCaps	TTM	Cannot always perform when trained on a smaller dataset	X
WavJourney [147]	AudioCaps	TTM	Inflexible to expand the functions. The process of remixing and deteriorating may push the synthetic audio away from the real. Model is time complex when generating the complex audio.	1
SingSong [246]	1 million audio samples	VIM	The generated instrumentals often exhibit a disparity, with harmonic elements being notably weaker (both in volume and coherence) when compared to their percussive counterparts.	1
LOAF-M2L [247]	Music Genaration	MTL		X
MeLoDy [249]	6.4 Million Samples based on MusicCaps	TTM MTM	Training data mostly contain non-vocal music only Training on LM and DPD on 10-second audio chunks can affect the long generation	1
MuseCoco [258]	MMD EMPOIA MetaMidi POP909 Symphony Emotion-gen	TSM	Model primarily focuses on producing symbolic music based on textual descriptions, with little consideration on long sequence modelling. The attribute set discussed in this work only represents a subset of all available music attributes.	1
LaunchpadGPT [262]	music-frame pairs dataset	PTM	Although LaunchpadGPT partially captures colour similarities, it lacks the ability to effectively learn more structured patterns.	1

Sparks of Large Audio Models: A Survey and Outlook, arXiv, 2023.

Audio: Autoregressive and Masked Predictive Coding.

(a) APC

Predicitve Models for Audio SSL.

 x_{t+1}

(a) Wav2Vec

 $x_{t+\tau}$

 x_t

 x_{t-2}

 x_{t-3}

 x_{t-1}

(b) VQ-Wav2Vec

Predicitve Models for Audio SSL.

Diarn M/ Cohullar

Model	Speech	Input format	Framework	Encoder	Loss	Inspired by
LIM [36]	~	raw waveform	(d)	SincNet	BCE, MINE or NCE loss	SimCLR
COLA [36]	×	log mel-filterbanks	(d)	EfficientNet	InfoNCE loss	SimCLR
CLAR [33]	×	raw waveform	(d)	1D ResNet-18	NT-Xent	SimCLR
(semi)		log mel-spectrogram		ResNet-18	+ cross-entropy	
Fonseca et al. [36]	×	log mel-spectrogram	(d)	ResNet, VGG, CRNN	NT-Xent loss	SimCLR
Wang et al. [88]	×	raw waveform	(d)	CNN	NT-Xent loss	SimCLR
		+ log mel-filterbanks		ResNet	+ cross-entropy	
BYOL-A [89]	×	log mel-filterbanks	(b)	CNN	MSE loss	BYOL
Speech2Vec [48]	 ✓ 	mel-spectrogram	(a)	RNN	MSE loss	Word2Vec
Audio2Vec [91]	✓X	MFCCs	(a)	CNN	MSE loss	Word2Vec
Carr [67]	 ✓ 	MFCCs	(a)	Context-free network	Fenchel-Young loss	-
Ryan [68]	×	constant-Q transform	(a)	AlexNet	Triplet loss	-
		spectrogram				-
Mockingjay [92]	~	mel-spectrogram	(a)	Transformer	L1 loss	BERT
TERA [93]	 ✓ 	log mel-spectrogram	(a)	Transformer	L1 loss	BERT
Audio ALBERT [94]	 ✓ 	log mel-spectrogram	(a)	Transformer	L1 loss	BERT
DAPC [95]	~	spectrogram	(a)	Transformer	Modified MSE loss	BERT
					+ orthogonality penalty	
PASE [96]	 ✓ 	log mel-spectrogram	(a)	Transformer	L1 loss	BERT

HEAR @NeurIPS.

Task Name	Embed Type	Predictor Type	Split Method	$\begin{array}{c} \mathbf{Duration} \\ (\text{seconds}) \end{array}$	# clips	Evaluation Metric	Novel
Open Tasks							
DCASE 2016 Task 2	Т	\mathbf{L}	TVT	120.0	72	Onset FMS	\checkmark
NSynth Pitch 5hr	\mathbf{S}	\mathbf{C}	TVT	4.0	5000	Pitch Acc.	\checkmark
NSynth Pitch 50hr	S	\mathbf{C}	TVT	4.0	49060	Pitch Acc.	\checkmark
Speech Commands 5hr	\mathbf{S}	\mathbf{C}	TVT	1.0	22890	Accuracy	\checkmark
Speech Commands Full	\mathbf{S}	\mathbf{C}	TVT	1.0	100503	Accuracy	
Secret Tasks							
Beehive States	\mathbf{S}	С	TVT	600.0	576	AUCROC	
Beijing Opera Percussion	\mathbf{S}	\mathbf{C}	5-fold	4.77	236	Accuracy	\checkmark
CREMA-D	\mathbf{S}	\mathbf{C}	5-fold	5.0	7438	Accuracy	
ESC-50	\mathbf{S}	\mathbf{C}	5-fold	5.0	2000	Accuracy	
FSD50K	\mathbf{S}	\mathbf{L}	TVT	0.3 - 30.0	51185	mAP	
Gunshot Triangulation	\mathbf{S}	\mathbf{C}	7-fold	1.5	88	Accuracy	\checkmark
GTZAN Genre	\mathbf{S}	\mathbf{C}	10-fold	30.0	1000	Accuracy	
GTZAN Music Speech	\mathbf{S}	\mathbf{C}	10-fold	30.0	128	Accuracy	
LibriCount	\mathbf{S}	\mathbf{C}	5-fold	5.0	5720	Accuracy	
MAESTRO 5hr	Т	\mathbf{L}	5-fold	120.0	185	Onset FMS	\checkmark
Mridangam Stroke	\mathbf{S}	\mathbf{C}	5-fold	0.81	6977	Accuracy	\checkmark
Mridangam Tonic	\mathbf{S}	С	5-fold	0.81	6977	Accuracy	\checkmark
Vocal Imitations	\mathbf{S}	\mathbf{C}	3-fold	11.26	5601	mAP	\checkmark
VoxLingua107 Top10	S	С	5-fold	18.64	972	Accuracy	\checkmark

SMILENets.

Dataset Name	Length [h]	Count [#]
Autism [3]	1.05	2 542
Conflict [3]	11.9	1 4 3 0
Emotion [3]	0.867	1 260
Voc [3]	8.43	2763
Deception [11]	2.78	1 555
Sincerity [11]	1.17	911
Cold [12]	44.4	28 652
Snore [12]	0.347	828
Crying [13]	2.83	5 587
Heartbeat [13]	7.05	845
Atypical Affect [13]	9.17	10 627
Self-Assessed [13]	5.13	2 3 1 3
Orca Activity [14]	4.6	13 409
Sleepiness [14]	17.7	16 462
Styrian Dialects [14]	2.32	9 7 3 2
Σ	120	98 916
Mask [15]	10.1	36 554
Breathing [15]	3.27	49

"SMILENets: Audio Representation Learning via Neural Knowledge Distillation of Traditional Audio-Feature Extractors", ICSFP, 2023.

SMILENets.

(b) *General-SMILENet architecture*

(a) Mask-SMILENet

Input
(16000, 1)
Convolutional Block
L: 2, F: 32, P: 2, D: 0.1
Convolutional Block
L: 2, F: 64, P: 2, D: 0.1
Convolutional Block
L: 2, F: 128, P: 2, D: 0.1
Convolutional Block
L: 2, F: 128, P: 2, D: 0.1
Convolutional Block
L: 2, F: 256, P: 2, D: 0.1
Convolutional Block
L: 2, F: 256, P: 2, D: 0.1
LSTM
U: 128, R: True, D: 0.3
Time Dist (FC)
U: 130
Time Dist (FC)
U: 130
Output
(100, 130)

"SMILENets: Audio Representation Learning via Neural Knowledge Distillation of Traditional Audio-Feature Extractors", ICSFP, 2023.

SMILENets.

Model	Breathing r	Mask UAR [%]
Best* baseline	0.507	64.2
Mask-SMILENet	—	61.1
General-SMILENet	0.493	61.1
Best ComParE	0.244	62.6

"SMILENets: Audio Representation Learning via Neural Knowledge Distillation of Traditional Audio-Feature Extractors", ICSFP, 2023.

SMILENets - F0.

"SMILENets: Audio Representation Learning via Neural Knowledge Distillation of Traditional Audio-Feature Extractors", ICSFP, 2023.

Transform.

"Dawn of the Transformer Era in Speech Emotion Recognition: Closing the Valence Gap", arXiv.org, 2022.

Transform.

CCC scores for arousal, dominance, valence (MSP-Podcast / IEMOCAP), and sentiment (MOSI). All models have been trained for emotional dimension prediction using multitasking on MSP-Podcast, and subsequently evaluated on its test set (in-domain), as well as to the test set of MOSI and the entire IEMOCAP dataset (cross-corpus).

SMILENets.

Word clouds with the 50 most positively / negatively rated words from the MSP-Podcast training set. The size of the words expresses their frequency.

"Dawn of the Transformer Era in Speech Emotion Recognition: Closing the Valence Gap", arXiv.org, 2022.

Transformers.

"Dawn of the Transformer Era in Speech Emotion Recognition: Closing the Valence Gap", arXiv.org, 2022.

Large Audio Models

"Dawn of the Transformer Era in Speech Emotion Recognition: Closing the Valence Gap", arXiv.org, 2022.

Video-2-Audio.

Known.

"SVTS: Scalable Video-to-Speech Synthesis", Interspeech, 2022.

Takeaway

Main Takeaways

- LLMs have emerging properties w/o specialised training.
- The performance is comparable to BoW.
- Specialised training on competent models yields better results.
- LLMs can be synergistically combined with these.
- LLMs can be used for multimodal data annotation.
- Large Models tend to bear large potential...

- <u>ACM Multimedia 2023 Computational Paralinguistics ChallengE (ComParE 2023)</u> @ ACM Multimedia 2023
- MER 2023: Chinese Multimodal Emotion Recognition Challenge @ ACM Multimedia 2023
- <u>1st International Workshop on Multimodal and Responsible Affective Computing (MRAC 2023)</u> @ ACM Multimedia 2023
- <u>4th Multimodal Sentiment Analysis Challenge and Workshop</u> @ ACM Multimedia 2023
- <u>"Micro-gesture Analysis for Hidden Emotion Understanding" (MiGA 2023)</u> @ IJCAI 2023
- 1st International Workshop on Data Mining for Mental Disorders (DMMD 2023) @ ICDM 2023
- <u>3rd Workshop on What's Next in Affect Modelling</u>@ ACII 2023
- Lifelong Learning in Affective Computing (LiLAC) @ ACII 2023
- <u>Frontiers in Digital Health</u>
- IEEE J-BHI Special Issue on <u>Tustworthy and Collaborative AI for Personalised Healthcare Through Edge-of-</u> <u>Things</u>
- IEEE T-ETCI Special Issue Computational Intelligence in Mental Health
- Frontiers in Medicine Research Topic on <u>Digital Health and Virtual Health Care for Adults and Older</u> <u>Adults: Innovative Technological Solutions for Diagnosis, Management, and Rehabilitation</u>
- Frontiers in Computer Science Research Topic on <u>Intelligent Audition Technologies for Personalized</u>
 <u>Healthcare</u>
- PeerJ Special Issue on Artificial Intelligence for Mental Health

Figure: Did ChatGPT answer this question correctly?

мо	How to reboot in 30 minutes on linux?	
\$	To reboot a Linux system in <mark>30 minutes,</mark> you can use the following command in the terminal:	企
	perl	
	sudo shutdown -r +30	
	This command will initiate a system reboot, with the $-r$ option specifying that the	
	system should be rebooted rather than shut down. The +30° option specifies the number of minutes from the current time until the reboot should occur. In this case, the system will	
	reboot in 30 minutes.	

Figure: One of those has to be wrong.

CALL FOR PAPERS

Artificial Intelligence for Mental Health: Advancements, Challenges, and Ethical Implications

Abstract submission deadline: 12 January 2024

SUBMISSIONS NOW OPEN

