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Can you design a neural net layer s.t.:

nnet

Trivia Quiz
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Agenda

● Motivation [15min]
○ Continual Learning
○ Modular Learning

● Modularity via Mixture Models [60min]
○ Detour 
○ Flat Hard Mixtures [1, 2]
○ Composable Mixtures [3]

● Conclusions [15min]
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{ training data

The  typical life cycle of a ML practitioner:

Look at the data

Try out a few things

Borrow ideas, code, model parameters, etc.

and a few more..

task A time (days)

and more..
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{ training data

The  typical life cycle of a ML practitioner:

Look at the data

Borrow ideas, code, model parameters, etc.

and a few more..

task A
time (days)

and more..

Learning is a continual process.
Learning is about striking good trade-offs.

Try out a few things
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training data

task A

task C

task B

task D

{

…

{

{

{
time (weeks)

There is a hierarchy of continual learning problems.

Machines and humans are co(ntinual) learners. The process is 
currently not efficient and poorly automated.

The  typical life cycle of a ML practitioner:
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There is a hierarchy of continual learning problems.

Machines and humans are co(ntinual) learners. The process is 
currently not efficient and poorly automated.

training data

task A

task C

task B

task D

{

…

{

{

{
time (weeks)

The  typical life cycle of a ML practitioner:

Learning is a continual process.
Learning is about striking good trade-offs.

Continual learning enables efficient learning,
via knowledge transfer.
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training data

(Semi-Automated) Swarm Continual Learning
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(Semi-Automated) Swarm Continual Learning

training data

(Semi-Automated) Continual Learner

{

{

{

{
time

{

{

{

{

time

{

{

{

{

time

Continual learning is already modular!

Continual learning enables efficient learning,
via knowledge transfer.

Learning is a continual process.
Learning is about striking good trade-offs.
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Divide & Conquer



Public    Dream: Distributed Never-Ending 
Learning System
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Public    Dream: Distributed Never-Ending 
Learning System

Only few parts       are needed at any given time.
Parts      can be added/removed/updated over time.Colin Raffel’s blog post on github ML

https://colinraffel.com/blog/a-call-to-build-models-like-we-build-open-source-software.html
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time

downstream 
task #1

downstream 
task #2

New tasks and data!
Training phase

Deployment phase

downstream 
task #3

downstream 
task #4

Deployment phase

Training phase

Current large-scale systems are accurate but costly and inefficient.
Monolithic & inefficient because of the weak transfer.

The current state of affairs in large-scale modeling

scaling laws



Public    Hard Questions

● What abstraction to use for continual learning?
○ What does cross-validation mean in this context?
○ What data can be useful to study this problem in a controlled setting?

● How to characterize a modular model?
● How to measure performance?

It is often a good idea to start from a concrete application or problem, and derive from 
there abstractions.
Judgement is required to figure out the good level of coarseness of the abstraction.
In our case, we want to build a large-scale system that is effective but also efficient at both 
training and testing time.



Public    

Summary

● Assumptions
○ No entity nor individual will ever have enough resources:

■ bigger is always better
■ there is always something new to learn 

● Observations
○ ML is already continual 
○ ML is already modular 

● Goal
○ Build a single distributed never-ending learning system which is more 

efficient and scalable
● Hypotheses

○ ML needs to be co-designed with distributed hardware
○ Modularity as a way to cooperate
○ Modularity is key to retain/gain efficiency as we scale
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Setting

X  data matrix of size DxB

Each input feature has dimensionality D.

There are B samples.

Assume: B >> D.

X   =   

sam
ple #1

sam
ple #2

sam
ple #B

 
…[          ] D

B



Matrix Factorization: SVD

X  = U S V = (U sqrt(S)) ((sqrt(S) V) = W Z

W = U sqrt(S)  matrix of size D x k, k < D

Z = sqrt(S) V   matrix of size k x B, k < B

Columns of W can be interpreted as bases.

Columns of Z are interpreted as code/features/latent variables/representations of 
samples in X.

   =   D

B B

D
k

k



Matrix Factorization: NMF, FA, …

There are LOTS of ways to factorize a matrix, each imposing a different set of constraints.



Matrix Factorization: Sparse Coding
X  = W Z

W  matrix of size D x k

Z   matrix of size k x B

This time, k is not constrained to be less than D! Nor columns of W need to be 
orthogonal.

The constraint is:

||Z||_0 < threshold    =   



Matrix Factorization: Sparse Coding
X  = W Z

W  matrix of size D x k

Z   matrix of size k x B

How to find Z:

L = ||X - WZ||^2 + \lambda ||Z||_0



Matrix Factorization: Sparse Coding
X  = W Z

W  matrix of size D x k

Z   matrix of size k x B

How to find Z in practice? Minimize:

L = ||X - WZ||^2 + \lambda ||Z||_1



Matrix Factorization: Sparse Coding
X  = W Z

W  matrix of size D x k

Z   matrix of size k x B

How to find Z in practice:

L = ||X - WZ||^2 + \lambda ||Z||_1

How to find W (for a given Z):

L = ||X - WZ||^2

Example of EM (or coordinate descent)



Matrix Factorization: Efficient Sparse Coding
X  = W Z

W  matrix of size D x k

Z   matrix of size k x B

How to find Z in practice:

L = ||X - WZ||^2 + \lambda ||Z||_1

How to find W (for a given Z):

L = ||X - WZ||^2

Example of EM (or coordinate descent)

Learn a neural predictor Z ~ g(X) to approximate 
the costly optimization process!

Kavukcuoglu et al. “Fast inference in sparse coding..” arXiv 2008 and my PhD thesis

https://arxiv.org/abs/1010.3467


Matrix Factorization: k-Means
X  = W Z

W  matrix of size D x k

Z   matrix of size k x B

How to find Z in practice:

L = ||X - WZ||^2, s.t. Z being 1-of-k

How to find W (for a given Z):

L = ||X - WZ||^2

Example of EM (or coordinate descent)





k-Means Recipe

1) Assign each example to a cluster
2) Update prototypes using all samples assigned to them
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   =   How could we distribute training of k-Means?



k-Means Recipe

1) Assign each example to a cluster
2) Update prototypes using all samples assigned to them

   =   How could we distribute training of k-Means?

How could we make k-Means “deep”?



k-Means Recipe

1) Assign each example to a cluster
2) Update prototypes using all samples assigned to them

   =   

set of biases codes determined via search in input 
feature space



k-Means Recipe

1) Assign each example to a cluster
2) Update prototypes using all samples assigned to them

   =   

set of biases search in input feature space

BIG 
TRANSFORMER

use feature space of 
BIG TRANSFORMER



k-Means Recipe

1) Assign each example to a cluster
2) Update prototypes using all samples assigned to them

   =   

set of biases search in input feature space

BIG 
TRANSFORMER

use feature space of 
BIG TRANSFORMER

How to extend this from the generative to the 
discriminative setting?
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Summary

● Matrix Factorization = Dataset Compression = Model Learning
○ Core building block of ML
○ Sparse coding & k-Means are special case

● k-Means is easy to distribute/scale up
● Is there a deep version of k-Means?
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k-Means



k-Means





Clustered / Locally Linear SVMs



Clustered / Locally Linear SVMs

1996

2013



Flat Hard Mixture of Experts



[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017

https://arxiv.org/abs/1704.06363


Assumptions

● Data is plentiful
● Any single model operating on a single machine underfits
● There exist lots of machines
● Communication cost across machines (or engineering cost) is high 
● Computation is cheap relative to communication

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017

https://arxiv.org/abs/1704.06363


Step 0: Train feature extractor

● Train small model on a single machine using standard training tools.
○ E.g.: Supervised learning of a small CNN

● Goal: Learn good representations
○ E.g.: Chop off top-most layer to extract features 

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017

input (image) 
space

feature space

https://arxiv.org/abs/1704.06363


Step 1: Train Gater

● Map each input example into feature space of 
● k-Means. Let’s call     the composition of     with k-means assignment 

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017

example shard id

k-Means assignment:

i-th prototype

https://arxiv.org/abs/1704.06363


Step 1: Train Gater

● Map each input example into feature space of 
● k-Means. Let’s call     the composition of     with k-means assignment 
● Divide original dataset into k shards using 

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017

example shard id

https://arxiv.org/abs/1704.06363


Step 2: Train Experts

● Train a network (expert) on each shard independently



Mixture of Experts

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017

output prediction:

https://arxiv.org/abs/1704.06363


[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017

output prediction:

gater

If the gater outputs a 1-of-K distribution over experts, then the mixture is “hard”.
In a hard mixture, the sum contains only a single term.

Benefits of hard mixtures: 1) easy to train, 2) cheap to deploy.

Hard EM for hard mixtures: Alternate minimization over gater assignments and experts parameters. 
In this paper, we performed just one step!

Mixture of Experts

https://arxiv.org/abs/1704.06363
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[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017

output prediction:

gater

If the gater outputs a 1-of-K distribution over experts, then the mixture is “hard”.
In a hard mixture, the sum contains only a single term.

Benefits of hard mixtures: 1) easy to train, 2) cheap to deploy.

Hard EM for hard mixtures: Alternate minimization over gater assignments and experts parameters. 
In this paper, we performed just one step!

Mixture of Experts

Ensembling would instead use a fixed uniform gating.

Boosting has a rule to set the (constant) gating function 
and trains experts sequentially…

https://arxiv.org/abs/1704.06363


[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017

output prediction:

gater experts

Mixture of Experts

Experts can be  heterogeneous, in terms of:
● architecture, 
● hyper-parameters choice, 
● training devices, 
● etc. 

https://arxiv.org/abs/1704.06363


Results on YFCC100M

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017

● Training is fully parallelizable
● For similar inference cost, 

MoE achieves much better 
accuracy

● Relative to ensembles, MoEs 
performs better and is 
cheaper at test time

https://arxiv.org/abs/1704.06363


Results on YFCC100M

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017

● Training is fully parallelizable
● For similar inference cost, 

MoE achieves much better 
accuracy

Results on ImageNet

too much overfitting…

https://arxiv.org/abs/1704.06363
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Summary

● Matrix Factorization
○ Core building block of ML
○ Sparse coding & k-Means are a special case

● Hard MoEs can be interpreted as generalization of k-Means
● Hard mixtures are amenable to distributed computation
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Summary

Hard mixtures
● pros

○ simple
○ trivially parallelizable (no synchronization)
○ cheap at test time
○ works when base model underfits
○ supports continual learning

● Cons
○ ML inefficient: requires more total parameters and more passes over 

data
○ computationally inefficient at training time
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Summary

Hard mixtures
● pros

○ simple
○ trivially parallelizable (no communication)
○ cheap at test time
○ works when base model underfits
○ supports continual learning

● Cons
○ ML inefficient: requires more total parameters and more passes over 

data
○ computationally inefficient at training time
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Original dataset
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New data can be handled by adding a new cluster/expert



Public    

Performance can be improved by splitting an expert in two, for instance.

In general, experts can be updated, added, and removed on demand.
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Summary

Hard mixtures
● pros

○ simple
○ trivially parallelizable (no communication)
○ cheap at test time
○ works when base model underfits
○ supports continual learning

● Cons
○ ML inefficient: requires more total parameters and more passes over 

data
○ computationally inefficient at training time

How to transfer knowledge across experts?



Public    NEVIS’22 Benchmark

106 task in total

~8 million images

Many domains

Number of datasets Data types per year

[2] Bornschein et al. NEVIS'22 Benchmark JMLR 2023

https://arxiv.org/abs/2211.11747


Assumptions

● Input is a stream of tasks
● Tasks relate to each other in unknown ways
● Learner can revisit old tasks, but cannot peek in the future
● Disk is cheap
● Compute is expensive 

[2] Bornschein et al. NEVIS'22 Benchmark JMLR 2023

https://arxiv.org/abs/2211.11747


Assumptions

● Input is a stream of tasks
● Tasks relate to each other in unknown ways
● Learner can revisit old tasks, but cannot peek in the future
● Disk is cheap
● Compute is expensive 

[2] Bornschein et al. NEVIS'22 Benchmark JMLR 2023

We can train a network (expert) per task.
How to transfer knowledge across experts?

https://arxiv.org/abs/2211.11747
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Initialize

Task 1 Task 2 Task 3

Initialize from the most related 
task

selected automatically

Train/Finetune

Finetuning from best encountered model

[2] Bornschein et al. NEVIS'22 Benchmark JMLR 2023

https://arxiv.org/abs/2211.11747
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Pick the one with the

 highest kNN accuracy

Finetuning from best encountered model

Task 3

Task 3 data

Construct features
using previous

models

Veniat et al. “Efficient continual learning with modular networks and task-driven priors” ICLR 2021
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Pareto Fronts

Finetuning from the most relevant

provides the best Pareto front

[2] Bornschein et al. NEVIS'22 Benchmark JMLR 2023

https://arxiv.org/abs/2211.11747


Public    Finetuning from the
most relevant task

A → B   =  “B fine-tuned from A”

Colors correspond to domains.
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Selective Finetuning Combined with Pre-Training

(always init from pretrained model)

(including pretrained model)



Public    Using as root the checkpoint of a large pretrained model 

● Shorter chains
● Lots of nodes at depth > 1
● A few hubs
● Nice clustering by domain



Public    Selective Finetuning

Pros
● Simple.
● Effective.

Cons
● Knowledge transfer only through initialization.
● Sometimes only a subset of parameters are useful.
● Better generalization if we could share parameters across tasks.

Similar findings in NLP domain:
Fisch et al. “Towards robust and efficient continual language learning” arXiv 2023

Selective finetuning yields a hard MoE which is incrementally built over time.
Gating is not learned, it is determined by the task id (provided at the input).

https://arxiv.org/pdf/2307.05741.pdf


flat hard Mixture of Experts

Issue: As we increase the number of experts, eventually the model starts overfitting.



composable mixture of experts
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expert
 1

expert
 2

expert
 3gater

+

input

output

expert
 1

expert
 2

expert
 3gater

+

input

output

expert
 1

expert
 2

expert
 3gater

+

FLAT COMPOSABLE
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Composable Mixtures

● pros
○ ML efficient as paths share parameters
○ compositional generalization
○ trivial continual learning extensions

● Cons
○ gater is hard to learn
○ engineering complexity
○ not easy to distribute
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training data

Colab Demo on composable MoEs

https://colab.research.google.com/drive/1GborZbpG_0qEH0pn3whnreNNVP2Giw6u?usp=sharing
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Setting
● Input is a stream of tasks
● Tasks relate to each other in unknown ways
● Learner cannot peek in the future
● Learner can load models of old tasks

Goals:
● Achieve best average accuracy
● Learn quickly new tasks
● Overall model size does not grow linearly over time
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Modular network at time t

layer 3 
modules

layer 2 
modules

layer 1 
modules

Existing pool of modules

task 1 task 2 task 3

…

Mixture of experts with gating performed at the task level.

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)

https://arxiv.org/abs/2012.12631
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Step 1: Receive new task

layer 3 
modules

layer 2 
modules

layer 1 
modules

Data of new task

Existing pool of modules

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)

https://arxiv.org/abs/2012.12631
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Step 2: Module retrieval

Retrieve most relevant modules at each layer.
E.g.: select modules of networks trained on 
most related past tasks (determined via kNN).
The retrieval set is a (data-driven) prior.

layer 3 
modules

layer 2 
modules

layer 1 
modules

Data of new task

Existing pool of modules Module retrieval

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)

https://arxiv.org/abs/2012.12631
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layer 3 
modules

layer 2 
modules

layer 1 
modules

Data of new task

Existing pool of modules Module retrieval

Step 3: Perturb & Search

Train in parallel k variants 
and select the best

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)

One could also use REINFORCE to 
train the k variants all at once.

https://arxiv.org/abs/2012.12631
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Step 4: Pool expansion

layer 3 
modules

layer 2 
modules

layer 1 
modules

Data of new task

Existing pool of modules Module retrieval

layer 3 
modules

layer 2 
modules

layer 1 
modules

New pool of modules

Arch. Search

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)

https://arxiv.org/abs/2012.12631


Results on          (toy stream with 100 tasks)

MNTDP achieves highest 
average accuracy while 
growing sub-linearly in 
memory.



Modular Networks with Task Driven Priors

● General idea: 
○ Retrieve most similar modules
○ Perturb & learn
○ Expand existing pool with newly trained modules

● Size of search space defines efficiency/efficacy trade-off.
● Because of growth, model is not going to lose plasticity over time.

Similar to selective finetuning chains, but operating at the level of modules as opposed to 
entire networks.

Open questions
● Scaling up
● Efficient architecture search
● How to learn a good initial set of modules

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)

https://arxiv.org/abs/2012.12631
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Success

Advice: Co-design what’s realizable in the next 5 years.

Examples:
● 90s-00s: SVMs & CPUs
● 2010-2020: CNNs & GPUs

Conjecture:
● Data will never be exhausted
● We need to scale further 
● No single entity will have enough compute: we must cooperate
● My bet is that we need to co-design around a distributed decentralized system



Public    

Conclusions

● Learning is about dealing with trade-offs.
● Machine learning is continual.
● Continual learning aims at improving efficiency via knowledge transfer.
● (Most) ML is continual in a naïve and poorly automated way.
● As models get bigger, it is more important than ever to make them more 

efficient.
● Conjecture: Modularity is key to scaling, efficiency, and continual learning.
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training data

On Intelligence

Intelligence must arise when there are suitable constraints.

What are the constraints?
● number of examples?
● compute?
● memory?
● time?
● ?

Continual learning is an instance of multi-objective learning.
Don’t tell me which method is most accurate.. but which one strikes the best 
trade-off between efficiency and accuracy.

Legg et al. Universal Intelligence arXiv 2007

https://arxiv.org/abs/0712.3329
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training data

On Intelligence

Intelligence must arise when there are suitable constraints.

What are the constraints?
● number of examples?
● compute?
● memory?
● time?
● ?

Continual learning is an instance of multi-objective learning.
Don’t tell me which method is most accurate.. but which one strikes the best 
trade-off between efficiency and accuracy.

Legg et al. Universal Intelligence arXiv 2007

Time has come to go beyond Empirical Risk Minimization!

https://arxiv.org/abs/0712.3329


Public    Relation of CL to Other Fields

Most of ML is continual!
CL needs input from sub-fields like 
meta-learning and auto-ml.
Vice-versa CL can lift these 
subfields and make them more 
practical.

Machine 
Learning

Continual 
Learning

Meta-Learning

Auto-ML

Online Learning

Transfer Learning

Distributed Opt.
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Some Open Research Questions

● How to contribute to the development of large-scale learning without access 
to huge computational resources?

● Learning is about striking trade-offs: How to formalize and derive practical 
algorithms or architectures?

● What constraints are meaningful in practice?
● How to retain efficiency as we scale up?
● How to modularize in a distributed way?
● How to grow from small to big?
● How to do efficient meta-learning?
● How do we cross-validate in a never-ending learning setting?
● How to add/update/remove knowledge?
● What’s the role of memory?
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Questions?
ranzato@google.com

https://ranzato.github.io/ 
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