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Can you design a neural net layer s.t.:
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The typical life cycle of a ML practitioner:

X‘*(\;\ A
Look at the data [ é“# O

Borrow ideas, code, model parameters, etc. GitHub

Try out a few thing E“

Lab%:

time (days)

and more..
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Look at the data ~

Learning is a continual process.

Learning is about striking good trade-offs.
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The typical life cycle of a ML practitioner:

There is a hierarchy of continual learning problems.

task A Machines and humans are co(ntinual) learners. The process is
currently not efficient and poorly automated.

{

task C

time (weeks
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Learning is a continual process.

Learning is about striking good trade-offs.

Continual learning enables efficient learning,
via knowledge transfer.

time (weeks
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The process is
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Learning is a continual process.
Learning is about striking good trade-offs.

Continual learning enables efficient learning,
via knowledge transfer.
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Dream: Distributed Never-Ending
Learning System
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Dream: Distributed Never-Ending
Learning System
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Only few parts O are needed at any given time. @
Colin Raffel's blog post on github ML Parts @ can be added/removed/updated over time.



https://colinraffel.com/blog/a-call-to-build-models-like-we-build-open-source-software.html

The current state of affairs in large-scale modeling

New tasks and data!

Training phase — e ek = = e e s (= > Training phase
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scaling laws

Deployment phase )
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downstream downstream [ downstream downstream
task #1 task #2 \ task #3 task #4

time

Current large-scale systems are accurate but costly and inefficient.
Monolithic & inefficient because of the weak transfer.
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Hard Questions

e What abstraction to use for continual learning?

o What does cross-validation mean in this context?

o What data can be useful to study this problem in a controlled setting?
e How to characterize a modular model?
e How to measure performance?

It is often a good idea to start from a concrete application or problem, and derive from

there abstractions.
Judgement is required to figure out the good level of coarseness of the abstraction.
In our case, we want to build a large-scale system that is effective but also efficient at both

training and testing time.
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Summary

Assumptions
o No entity nor individual will ever have enough resources:
m bigger is always better
m thereis always something new to learn
Observations
o ML is already continual
o ML is already modular
Goal
o Build a single distributed never-ending learning system which is more
efficient and scalable

Hypotheses
o ML needs to be co-designed with distributed hardware
o Modularity as a way to cooperate G
o Modularity is key to retain/gain efficiency as we scale b
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Setting

X data matrix of size DxB

Each input feature has dimensionality D
There are B samples.

Assume: B >> D.

L# a|dwes
Z# 9|dwes

X
I
—

g# s|dwes

—
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Matrix Factorization: SVD

X =USV-=(Usart(S)) ((sqrt(S) V) =W Z
W = U sqrt(S) matrix of size D xk, k<D
Z=sqrt(S)V matrix of size k x B, k<B
Columns of W can be interpreted as bases.

Columns of Z are interpreted as code/features/latent variables/representations of
samples in X.




Matrix Factorization: NMF, FA, ...

There are LOTS of ways to factorize a matrix, each imposing a different set of constraints.



Matrix Factorization: Sparse Coding
X =W Z
W matrix of size D x k

Z matrix of size k x B

This time, k is not constrained to be less than D! Nor columns of W need to be
orthogonal.

The constraint is: s

11ZI|_0 < threshold - o | ¢




Matrix Factorization: Sparse Coding
X =W Z
W matrix of size D x k

Z matrix of size k x B

How to find Z:
L =||X - WZ||*2 + \lambda ||Z||_0



Matrix Factorization: Sparse Coding
X =W Z
W matrix of size D x k

Z matrix of size k x B

How to find Z in practice? Minimize:

L = [|X - WZ||*2 + \lambda ||Z]|__1



Matrix Factorization: Sparse Coding
X =W Z
W matrix of size D x k

Z matrix of size k x B

How to find Z in practice:

L = [|X - WZ||*2 + \lambda ||Z]|__1

Example of EM (or coordinate descent)

How to find W (for a given Z):
L =||X - WZ||*2



Matrix Factorization: Efficient Sparse Coding
X =W Z
W matrix of size D x k

Z matrix of size k x B

How to find Z in practice: Learn a neural predictor Z ~ g(X) to approximate
the costly optimization process!

L = [|X - WZ||*2 + \lambda ||Z||_1
How to find W (for a given Z): Example of EM (or coordinate descent)
L =||X - WZ||*2

Kavukcuoglu et al. “Fast inference in sparse coding..” arXiv 2008 and my PhD thesis



https://arxiv.org/abs/1010.3467

Matrix Factorization: k-Means
X =WZ
W matrix of size D x k

Z matrix of size k x B

How to find Z in practice:

L = ||X - WZ||"2, s.t. Z being 1-of-k

Example of EM (or coordinate descent)

How to find W (for a given Z):
L =||X - WZ||*2
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k-Means Recipe

1) Assign each example to a cluster
2) Update prototypes using all samples assigned to them




k-Means Recipe
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2) Update prototypes using all samples assigned to them




k-Means Recipe

1) Assign each example to a cluster
2) Update prototypes using all samples assigned to them

How could we make k-Means “deep”?




k-Means Recipe

1) Assign each example to a cluster
2) Update prototypes using all samples assigned to them

set of biases codes determined via search in input

feature space



k-Means Recipe

1) Assign each example to a cluster
2) Update prototypes using all samples assigned to them

search in input feature space

set of biases
c BIG c use feature space of

TRANSFORMER BIG TRANSFORMER




k-Means Recipe

1) Assign each example to a cluster
2) Update prototypes using all samples assigned to them

How to extend this from the generative to the

discriminative setting?

set of biases
c BIG c

search in input feature space

use feature space of
TRANSFORMER BIG TRANSFORMER
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Summary

e Matrix Factorization = Dataset Compression = Model Learning
o Core building block of ML
o Sparse coding & k-Means are special case

e k-Means is easy to distribute/scale up

e |[s there a deep version of k-Means?

O
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Local Learning Algorithms

Léon Bottou, Vladimir Vapnik
AT&T Bell Laboratories, Holmdel, NJ 07733, USA

Abstract

Very rarely are training data evenly distributed in the input space. Local learning algo-
rithms attempt to locally adjust the capacity of the training system to the properties of the
training set in each area of the input space.

The family of local learning algorithms contains known methods, like the k-Nearest Neigh-
bors method (kNN) or the Radial Basis Function networks (RBF), as well as new algorithms.
A single analysis models some aspects of these algorithms. In particular, it suggests that
neither kNN or RBF, nor non local classifiers, achieve the best compromise between locality
and capacity.

A careful control of these parameters in a simple local learning algorithm has provided a
performance breakthrough for an optical character recognition problem. Both the error rate
and the rejection performance have been significantly improved.



Clustered / Locally Linear SVMs




1996 Clustered Support Vector Machines

Quanquan Gu Jiawei Han
Department of Computer Science Department of Computer Science
University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign
qgu3@illinois.edu hanj@cs.uiuc.edu
2013
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Flat Hard Mixture of Experts
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Hard Mixtures of Experts for Large Scale Weakly Supervised Vision

Sam Gross, Marc’ Aurelio Ranzato, and Arthur Szlam

Facebook AI Research (FAIR)

Abstract

Training convolutional networks (CNN’s) that fit on a single
GPU with minibatch stochastic gradient descent has become
effective in practice. However, there is still no effective method
for training large CNN'’s that do not fit in the memory of a few
GPU cards, or for parallelizing CNN training. In this work we
show that a simple hard mixture of experts model can be effi-
ciently trained to good effect on large scale hashtag (multilabel)
prediction tasks. Mixture of experts models are not new [, "],

hut in tho nact voconvehove homio had tn dovico canhictiratod

As the data gets bigger, we can expect to be able to scale
up our models as well, and get better features; more data
means more refined models with less overfitting. However,
even today’s state of the art convolutional models cannot keep
up with the size of today’s weakly supervised data. With our
current optimization technology and hardware, more images are
posted to photo sharing sites in a day than can be passed through
the training pipeline of standard state of the art convolutional
architectures. Furthermore, there is evidence [, ©] and below
in this work, that these architectures are already underfitting

nn datacate at the erale nf hiindredc af millinne naf imaaec

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017
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Assumptions

Data is plentiful

Any single model operating on a single machine underfits

There exist lots of machines

Communication cost across machines (or engineering cost) is high
Computation is cheap relative to communication

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017
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Step 0: Train feature extractor

e Train small model on a single machine using standard training tools.
o E.g.: Supervised learning of a small CNN

e Goal: Learn good representations
o E.g.: Chop off top-most layer to extract features

h(z;0,): R° — RY

input (image) feature space
space

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017
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Step 1: Train Gater

e Map each input example into feature space of h
e k-Means. Let’s call g the composition of h with k-means assignment

shard id

example
o {{ h H_\_H‘ i,i€[1, k]
g

k-Means assignment: arg min ||h(z) — W3] |2

i€[1,k] \

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017

i-th prototype
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Step 1: Train Gater

e Map each input example into feature space of h
e k-Means. Let’s call g the composition of A with k-means assignment
e Divide original dataset into k shards using g

@ o
®e o -
O o° ® e ,0
5 O QO ©,®
- O O
example shard id ® @ )

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017
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Step 2: Train Experts

Train a network (expert) on each shard independently




Mixture of Experts

k
output prediction: Z g(.’L’, Hg)f(m, 07,)
1=1

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017
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Mixture of Experts

k )
output prediction: (.’I;; Hg ) f(w; 0’& )

e J
1— ]- gater

If the gater outputs a 1-of-K distribution over experts, then the mixture is “hard”.
In a hard mixture, the sum contains only a single term.

Benefits of hard mixtures: 1) easy to train, 2) cheap to deploy.

Hard EM for hard mixtures: Alternate minimization over gater assignments and experts parameters.
In this paper, we performed just one step!

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017
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Mixture of Experts

k
output prediction: (CB; Hg ) f(a:; 0’& )

e J
1— ]- gater

Hard EM for hard mixtures: Alternate minimization over gater assignments and experts parameters.
In this paper, we performed just one step!

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017
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Mixture of Experts

k )
output prediction: (iE; Hg ) f(w; 0’& )
J

Z_ gater

Ensembling would instead use a fixed uniform gating.
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Mixture of Experts

k

output prediction: (.’L‘ ] Hg )If(m ; 07,)

1— ]- gater experts

Experts can be heterogeneous, in terms of:
e architecture,
e hyper-parameters choice,
e training devices,
e etc.

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017
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Results on YFCC100M

Model g e Training is fully parallelizable
g::gzzéi 2(3)?3; e For similar inference cost,
ResNet-50 3: 47% MoE achieves much better
ResNet-50 4 xfeature size 3.80% acctracy

ResNet-18 ensemble-50 337% ©® Relativetoensembles, MoEs
ResNet-18 MoE-25 5359, performs better and is
ResNet-18 MoE-50 6.12% cheaper at test time
ResNet-18 MoE-75 6.65%

ResNet-18 MoE-100 6.87%

ResNet-34 MoE-50 6.77%

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017
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Results on YFCC100M

Mipdel q@l Training is fully parallelizable
ResNet-18 3.04% For similar inference cost,
ResNet-34 3.31% MoE achieves much better
ResNet-50 3.47% accuracy
ResNet-50 4 x feature size 3.80%
ResNet-18 ensemble-50 3.37%
ResNet-18 MoE-25 5.35% Results on ImageNet
ResNet-18 MoE-50 6.12% -

odel ‘ Top-1 error  Top-5 error
ResNet-18 MoE-75 6.65%  ResNet-18 30.64 10.69%
ResNet-18 MoE-100 6.87% ResNet-18 MoE-50 30.43 11.7%
ResNet-34 MoE-50 6.77% too much overfitting...

[1] Gross et al. “Hard mixture of experts for large-scale weakly supervised vision” CVPR 2017
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Summary

e Matrix Factorization

o Core building block of ML

o Sparse coding & k-Means are a special case
e Hard MoEs can be interpreted as generalization of k-Means
e Hard mixtures are amenable to distributed computation

O
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Summary

Hard mixtures
® pros
o simple
o trivially parallelizable (no synchronization)
o cheap at test time
o works when base model underfits
o supports continual learning

e Cons
o ML inefficient: requires more total parameters and more passes over
data

o computationally inefficient at training time

O
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Summary

Hard mixtures
® pros
o simple
o trivially parallelizable (no communication)
o cheap at test time
o works when base model underfits
o supports continual learning

e Cons
o ML inefficient: requires more total parameters and more passes over
data

o computationally inefficient at training time

O



Original dataset
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New data can be handled by adding a new cluster/expert
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Performance can be improved by splitting an expert in two, for instance.

-
QOSQ H
© o ®
® ® @ o©
© o_0
0O o o
O O @
O @ 900

In general, experts can be updated, added, and removed on demand.

Public
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Summary

Hard mixtures
® pros
O Si

How to transfer knowledge across experts?

v od
e Cons
o ML inefficient: requires more total parameters and more passes over
data

o computationally inefficient at training time

o



NEVIS'22 Benchmark

106 task in total

~8 million images

Number of datasets Data types per year
@® Dataets per year @ Datasets so far xXray .
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quality .
50 medical . +
scene e o ° ° °
ocCr e ° o o e o
10 shape . o
object L2 @ ® * * L 2 L 3 L 3 ® L 3 L 3 * L 2 L 3 ® © L 3
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face . e e o o ° ®
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[2] Bornschein et al. NEVIS'22 Benchmark JMLR 2023
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Assumptions

Input is a stream of tasks

Tasks relate to each other in unknown ways

Learner can revisit old tasks, but cannot peek in the future
Disk is cheap

Compute is expensive

[2] Bornschein et al. NEVIS'22 Benchmark JMLR 2023
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Assumptions

Input is a stream of tasks

Tasks relate to each other in unknown ways

Learner can revisit old tasks, but cannot peek in the future
Disk is cheap

We can train a network (expert) per task.

How to transfer knowledge across experts?

[2] Bornschein et al. NEVIS'22 Benchmark JMLR 2023
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Finetuning from best encountered model

_____________________________________________________

/ AY
’ ey 0 .

, Initialize Initialize from the most related

: task

| selegted automatically »

I

1

\

S ————

\ ’/
P A Task2 " Task3 >,
| Train/Finetune ! | !
I i ! :
I ; ! :
I ; ! :
I ; : :
: |
: |
|
I
\\ y;

_____________________________________________________

[2] Bornschein et al. NEVIS'22 Benchmark JMLR 2023
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Finetuning from best encountered model

< "= Pick the one with the
TaSk 3 data ----------------- )
highest kNN accuracy

A
I
1
1
1
1

————

i Construct features:
| using previous !
E models |
5 : Task 3

w

O

Veniat et al. “Efficient continual learning with modular networks and task-driven priors” ICLR 2021



Pareto Fronts

B85 Method Name
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le19 1e20 le21
cFLOPs

[2] Bornschein et al. NEVIS'22 Benchmark JMLR 2023
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A->B = “Bfine-tuned fromA”
Colors correspond to domains.




Selective Finetuning Combined with Pre-Training

0.274

0.26+

o
N
()

Average Error
o o
N N
w S

0.224

0.21 ' ' . v
1.145e+21 1.150e+21 1.155e+21 1.160e+21

cFLOPs

<~ From pretrained (VLM): Independent (always init from pretrained model)

~— From pretrained (VLM): Finetuning from the most relevant (including pretrained model)
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Selective Finetuning

Pros
e Simple.
e [Effective.

Cons
e Knowledge transfer only through initialization.
e Sometimes only a subset of parameters are useful.
e Better generalization if we could share parameters across tasks.

~ 7/
~ ~ Selective finetuning yields a hard MoE which is incrementally built over time.
5 =~ Gating is not learned, it is determined by the task id (provided at the input).
Similar findings in NLP domain: @

Fisch et al. “Towards robust and efficient continual language learning” arXiv 2023



https://arxiv.org/pdf/2307.05741.pdf

flat hard Mixture of Experts
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Issue: As we increase the number of experts, eventually the model starts overfitting.



composable mixture of experts
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Composable Mixtures

® pros
o ML efficient as paths share parameters
o compositional generalization
o trivial continual learning extensions
e Cons
o gateris hard to learn
o engineering complexity
o not easy to distribute

o



Colab Demo on composable MoEs

input output

100 1 |
0.75 1 i
2
0.50 1 T
0.25 1
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-2 0


https://colab.research.google.com/drive/1GborZbpG_0qEH0pn3whnreNNVP2Giw6u?usp=sharing
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Setting

e Inputis a stream of tasks

e Tasks relate to each other in unknown ways
e Learner cannot peek in the future

e |earner can load models of old tasks

Goals:
e Achieve best average accuracy
e Learn quickly new tasks
e Overall model size does not grow linearly over time

O



Modular network at time t

Existing pool of modules

I I
E e

task 1 task 2 task 3

Mixture of experts with gating performed at the task level.

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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Step 1. Receive new task

Existing pool of modules

Data of new task

(

O

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)



https://arxiv.org/abs/2012.12631

Step 2: Module retrieval

Existing pool of modules Module retrieval

Data of new task

Retrieve most relevant modules at each layer.

- E.g.: select modules of networks trained on
most related past tasks (determined via kNN).
The retrieval set is a (data-driven) prior.

(

O

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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Step 3: Perturb & Search

Existing pool of modules Module retrieval

Train in parallel k variants
and select the best

Data of new task T T
e
~—
N—)
= ] ]
£ e
|

One could also use REINFORCE to
train the k variants all at once.

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)
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Step 4. Pool expansion

Existing pool of modules Module retrieval New pool of modules

Arch. Search

Data of new task T \

il
— [ ]
£

(

.
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Results on S8 (toy stream with 100 tasks)

MNTDP achieves highest
average accuracy while
growing sub-linearly in
memory.

O
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Modular Networks with Task Driven Priors

e Generalidea:
o Retrieve most similar modules
o Perturb & learn
o Expand existing pool with newly trained modules
e Size of search space defines efficiency/efficacy trade-off.
e Because of growth, model is not going to lose plasticity over time.

Similar to selective finetuning chains, but operating at the level of modules as opposed to
entire networks.

Open questions
e Scaling up
e Efficient architecture search
e How to learn a good initial set of modules

O

Veniat et al. Efficient Continual Learning with Modular Networks and Task Driven Priors (ICLR 2021)



https://arxiv.org/abs/2012.12631

Agenda

e Motivation [15min]
o Continual Learning
o Modular Learning
e Modularity via Mixture Models [60min]
o Detour
o Flat Hard Mixtures [1, 2]
o Composable Mixtures [3]
e Conclusions [15min]
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Success

Advice: Co-design what's realizable in the next 5 years.

Examples:
e 90s-00s: SVMs & CPUs
e 2010-2020: CNNs & GPUs

Conjecture:
e Data will never be exhausted
e We need to scale further
e No single entity will have enough compute: we must cooperate
e My bet is that we need to co-design around a distributed decentralized system

O



Conclusions

Learning is about dealing with trade-offs.

Machine learning is continual.

Continual learning aims at improving efficiency via knowledge transfer.
(Most) ML is continual in a naive and poorly automated way.

As models get bigger, it is more important than ever to make them more
efficient.

Conjecture: Modularity is key to scaling, efficiency, and continual learning.

O



On Intelligence \y/-

Intelligence must arise when there are suitable constraints.

What are the constraints?
number of examples?
compute?

memory?

time?

?

Continual learning is an instance of multi-objective learning.
Don't tell me which method is most accurate.. but which one strikes the best
trade-off between efficiency and accuracy.

Legg et al. Universal Intelligence arXiv 2007

o
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Continual learning is an instance of multi-objective learning.
Don't tell me which method is most accurate.. but which one strikes the best
trade-off between efficiency and accuracy.

Legg et al. Universal Intelligence arXiv 2007

O


https://arxiv.org/abs/0712.3329

Relation of CL to Other Fields

Most of ML is continual!

CL needs input from sub-fields like
meta-learning and auto-ml.
Vice-versa CL can lift these
subfields and make them more
practical.

Me

Auto-y.
Machine
Learning

Distributed Opt-

onliné

Continual
Learning




Some Open Research Questions

How to contribute to the development of large-scale learning without access
to huge computational resources?

Learning is about striking trade-offs: How to formalize and derive practical
algorithms or architectures?

What constraints are meaningful in practice?

How to retain efficiency as we scale up?

How to modularize in a distributed way?

How to grow from small to big?

How to do efficient meta-learning?

How do we cross-validate in a never-ending learning setting?

How to add/update/remove knowledge?

What's the role of memory? @



Questions?

ranzato@google.com

https://ranzato.github.io/
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