
Larger-scale model training on multi-GPU systems
Giuseppe Fiameni – gfiameni@nvidia.com
ELLIS Summer School on Large-Scale AI for Research and Industry Modena, 18-22 September 2023



About Me
Giuseppe Fiameni – gfiameni@nvidia.com

• AI & HPC @ NVIDIA
• Support Higher Education and Research through collaboration 

projects

• Lead engineer of the NVIDIA AI Technology Center, Italy
• Agreement among CINI, CINECA and NVIDIA to accelerate 

scientific discovery 

• 10+ years experience delivering HPC applications and large 
data processing solutions at CINECA (www.hpc.cineca.it)



Why this tutorial?

• Deep Learning is transitioning from being a computer science towards a computational science. 

• Advanced computing and large-scale infrastructure are fundamental to conduct science i.e., 
train gigantic models, process massive data, achieve better performance, reduce time to 
solutions. 



Notebooks & CODE
https://gitlab.hpc.cineca.it/gfiamen1/hpc-dl-ellis-2023 



CINECA Leonardo system
https://leonardo-supercomputer.cineca.eu/

• Nodes: 3456 booster nodes

• Processors: Intel Xeon 8358 32 cores, 2.6 
GHz

• Accelerators: 4 x NVIDIA custom Ampere 
GPU 64GB HBM2

• RAM: (8x64) GB DDR4 3200 MHz

• Network: 2 x NVIDIA HDR cards 2x100Gb/s

• 106 PB (raw) Large capacity storage, 620 
GB/s

4th fastest supercomputer worldwide



AGENDA

Why Large datasets and Large Neural Networks?

Scaling law

Training large neural networks

Single GPU optimization

Multi GPU optimization

Hands-on using CINECA resources





Dramatic increase in Model Sizes
The Trend Continues

Transformer:   275x / 2yrs
All AI Models:    25x / 2yrs
Moore’s Law:      2x / 2yrs 

10,000,000,000

100,000,000

1,000,000,000

10,0000,00

1,0000,00

1000,00

100,00

10,00

100

T
ra

in
in

g 
C

om
pu

te
 (

Pe
ta

FL
O

PS
)

AlexNet

Resnet

VGG-19 Seq2Seq

InceptionV3

Xception

ResNetXt

DenseNet201

ELMo

Transformer

GPT-1

BERT Large

MoCo ResNet50

Wav2Vec 2.0
XLNet

Megatron

Microsoft T-NLG

GPT-3

Megatron-Turing NLG 530B

2012        2013       2014        2015        2016       2017        2018       2019        2020        2021        2022



NEW PROMISE
Logarithmic relationship between the dataset size and accuracy

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint 
arXiv:1712.00409.



Scaling Laws apply to NLP
As you increase the dataset size, you must also increase the model size

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, D. (2020). Scaling Laws for Neural Language Models. arXiv preprint 
arXiv:2001.08361.



Scaling Laws apply to computer vision too
Increase in performance is proportional to the model size and dataset size

Big Transfer (BiT): General Visual Representation Learning



Empirical evidence
The Scaling Laws for generative models

Henighan, Tom, et al. "Scaling laws for autoregressive generative modeling." arXiv preprint arXiv:2010.14701 (2020).



Zhai, Xiaohua, et al. "Scaling vision transformers." arXiv preprint arXiv:2106.04560 (2021).

Empirical evidence
The Scaling Laws in Computer Vision & Speech

Droppo, Jasha, and Oguz Elibol. "Scaling Laws for Acoustic Models." arXiv preprint arXiv:2106.09488 (2021).



IT IS MORE THAN JUST ACCURACY



Importance of Dataset size
Dataset size more important than neural network design

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, D. (2020). Scaling Laws for Neural Language Models. arXiv preprint 
arXiv:2001.08361.

“… more importantly, we find that the precise architectural 
hyperparameters are unimportant compared to the overall 
scale of the language model.”



Even more importantly
Large Neural Networks use data more efficiently

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint 
arXiv:1909.08053
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165..



Are Large language models worth it?
The cost of incremental improvement

Are we building those 
models only for the 
small incremental 

improvement in their 
performance?

Is it worth all the 
engineering and 
computational 

investment?

10,000x Increase

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, 
Benjamin Mann, Alec Radford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, Sam McCandlish. Scaling Laws for Autoregressive Generative 
Modeling.2020



Few shot learning
Learning from far fewer examples

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165..



Model sizes vs tasks
LLM

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html



PERSPECTIVE



WHAT DO I MEAN BY BIG
GPT-3 size comparison: 538x Bigger than BERT-Large

3.14*10^8 PFLOPSNot a linear scale



WHAT DO I MEAN BY BIG
GPT-3 size comparison: 538x Bigger than BERT-Large

~31 years on a single A100Not a linear scale



ESTIMATE COMPUTE NEEDED
Calculate how many hours/days compute resource need

。

Source :https://arxiv.org/pdf/2005.14165.pdf



Scale of compute
Within reach of most companies

• ~6 weeks on 1 x DGX A100
• ~2 weeks on 4 x DGX A100

• ~5 years on 1 x DGX A100
• ~1 year on 4 x DGX A100

Weak scaling throughput for GPT models ranging from 1 billion to 1 trillion parameters. • ~69 years on 1 x DGX A100
• ~17 year on 4 x DGX A100

• ~65 weeks on 1 x DGX A100
• ~16 weeks on 4 x DGX A100

Narayanan, Deepak, et al. "Efficient large-scale language model training on GPU clusters using megatron-
LM." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 2021.



Going bigger
The challenge

Consider 1 billion parameters model in FP16 and do the math: 

• Data representation: Weights and Gradients in FP16

• Adam optimizer: Store 12 bytes per weight in FP16

10^9 * ( 2B + 2B + 12B) = 14.90GB 

12 bytes per optimizer state
2 bytes per gradient2 bytes per weight

1 billion parameters



GPU Memory occupation

1. model weights 

2. optimizer states 

3. gradients 

4. forward activations saved for gradient computation 

5. temporary buffers 

6. functionality-specific memory



GPU Memory occupation
In details

• Model Weights
• 4 bytes * number of parameters for fp32 training
• 6 bytes * number of parameters for mixed precision training (maintains a model in fp32 and one in fp16 in memory)

• Optimizer States
• 8 bytes * number of parameters for normal AdamW (maintains 2 states)
• 2 bytes * number of parameters for 8-bit AdamW optimizers like bitsandbytes
• 4 bytes * number of parameters for optimizers like SGD with momentum (maintains only 1 state)

• Gradients
• 4 bytes * number of parameters for either fp32 or mixed precision training (gradients are always kept in fp32)

• Forward Activations
• size depends on many factors, the key ones being sequence length, hidden size and batch size



3B-parameter model
T5-3b

• AdamW uses 8 bytes for each parameter, here the optimizer will need (8*3) 24GB of 
GPU memory.

• Adafactor uses slightly more than 4 bytes, so (4*3) 12GB and then some extra.

• 8bit BNB quantized optimizer will use only (2*3) 6GB if all optimizer states are 
quantized.

• A standard Adam uses 16 bytes for each parameter, so (8*3) 48GB of GPU memory.



HOW CAN WE HANDLE THIS COMPLEXITY?



Objectives

• Fit very large models into limited hardware
• e.g. t5-11b is 45GB in just model params

• Significantly speed up training 
• finish training that would take a year in hours



Optimization techniques

Method Speed Memory

Gradient accumulation No Yes

Gradient checkpointing No Yes

Mixed precision training Yes (No)

Batch size Yes Yes

Optimizer choice Yes Yes

DataLoader Yes No

DeepSpeed Zero No Yes

https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one



UTILIZING A SINGLE GPU EFFICIENTLY –
PRELIMINARY COMMENTS



The Fundamental Operation of DEEP LEARNING
FUSED MULTIPLY ADD

• Fused matrix multiply and accumulate (FMA) 
operations are the core operations of deep 
learning training and inference.

• 1st generation Tensor Cores (V100) perform 64 
floating point FMA mixed-precision operations 
per clock (FP16 input multiply with full-
precision product and FP32 accumulate), i.e., 4 
4x4 matrix tiles.

• Higher generation Tensor Cores support 
additional precisions.



Arithmetic Intensity

• The operation is said to be compute-bound or data-bound depending on which one 
finishes last, with the former scenario being preferable here. 

• The threshold for a compute-bound operation is described through the concept of 
arithmetic intensity (ratio between the amount of computation and data transfer). 

• A NVIDIA A100 has a peak computational power of 312 teraflops for half-precision 
and a memory bandwidth of 2039 GB/s, for an arithmetic intensity threshold of 143 
flops/B. 

• A binary addition with an arithmetic intensity of 1/6 lies deeply in the memory-bound 
region, while the multiplication of two 1024x1024 matrices has an arithmetic 
intensity of 341 and is compute-bound. 



Transformers architecture

• Tensor Contractions
• Linear layers and components of Multi-Head 

Attention all do batched matrix-matrix 
multiplications. 

• Statistical Normalizations
• Softmax and layer normalization are less 

compute-intensive than tensor contractions, 
and involve one or more reduction operations.

• Element-wise Operators
• Biases, dropout, activations, and residual 

connections. 

DATA MOVEMENT IS ALL YOU NEED: A CASE STUDY ON OPTIMIZING TRANSFORMERS https://arxiv.org/pdf/2007.00072.pdf



Simplified EXECUTION MODEL

• N Kernels are executed in parallel by N different CUDA 
threads.

• Threads are arranged a one-dimensional, two-dimensional, or 
three-dimensional block of threads, called a thread block. A set 
of thread blocks are launched to execute a function.

• It is usually better the overcommit w.r.t. the number of threads 
to facilitate instruction latency.

• When a multiprocessor is given one or more thread blocks to 
execute, it partitions them into warps and each warp gets 
scheduled by a warp scheduler for execution.

• It is important to avoid warp divergence (“thread blocks of 
different size”) whenever possible!

• A set of thread blocks running concurrently is called a wave. 
The more waves, the better to minimize tail effects.



A simple example
GEMMs

• Tile quantization effect on (a) achieved FLOPS throughput 
and (b) elapsed time, alongside (c) the number of tiles 
created.

• Measured with a function that forces the use of 256x128 
tiles over the MxN output matrix. In practice, cuBLAS
would select narrower tiles (for example, 64-wide) to 
reduce the quantization effect. 

• Experiment performed on NVIDIA A100-SXM4-80GB, 
CUDA 11.2, cuBLAS 11.4.



Checklist for CONVOLUTIONAL LAYERS
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#checklist

• Choose the number of input and output channels to be divisible by 8 (for 
FP16) or 4 (for TF32). Also consider padding the input channels.

• Choose parameters (batch size, number of input and output channels) to 
be divisible by at least 64 and ideally 256 to enable efficient tiling and 
reduce overhead.

• Larger values for size-related parameters (batch size, input and output 
height and width, and the number of input and output channels) can 
improve parallelization and hence increase efficiency.

• Make sure auto-tuning is enabled, if applicable.

• Choose tensor layouts in memory to avoid transposing input and output 
data. We recommend using the NHWC format where possible.

For specific guidance on 2D and 
particularly 3D convolutions, please also 
refer to 
https://docs.nvidia.com/deeplearning/
cudnn/best-practices/index.html

https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html
https://docs.nvidia.com/deeplearning/cudnn/best-practices/index.html
https://docs.nvidia.com/deeplearning/cudnn/best-practices/index.html


Checklist for FuLLY CONNECTED LAYERS
https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html#checklist

• Choose the batch size and the number of inputs and outputs to be 
divisible by 4 (TF32) / 8 (FP16) / 16 (INT8) to run efficiently on Tensor 
Cores. For best efficiency on A100, choose these parameters to be 
divisible by 32 (TF32) / 64 (FP16) / 128 (INT8).

• Especially when one or more parameters are small, choosing the batch 
size and the number of inputs and outputs to be divisible by at least 64 
and ideally 256 can streamline tiling and reduce overhead.
à Larger values for batch size and the number of inputs and outputs 
improve parallelization and efficiency.

• As a rough guideline, choose batch sizes and neuron counts greater than 
128 to avoid being limited by memory bandwidth (NVIDIA A100-SXM4-
80GB; this threshold is similar for other A100 and V100 GPUs).

https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html


Important cuDNN flags
https://pytorch.org/docs/stable/backends.html#torch-backends-cudnn

Important aspects to consider:

• In NGC containers, the usage of TensorFloat-32 is 
enabled by default in order to accelerate FP32 
calculations using tensor cores on Ampere or newer 
GPUs.

• Certain classes of CUDA functions are a potential 
source of non-determinism, such as atomicAdd, 
where the order of parallel additions to the same 
value is undetermined and, for floating-point 
variables, a source of variance in the results.

• cuDNN can automatically determine which 
combination of primitives is most optimal. Only use 
this flag when input sizes of a model are no 
changing!

# get the cuDNN version
torch.backends.cudnn.version()

# check availability
torch.backends.cudnn.is_available()

# enabling cuDNN (default = True)
torch.backends.cudnn.enabled = True

# enabling TF32 (default = True for DL)
torch.backends.cudnn.allow_tf32 = True

# enable determinism (default = False)
torch.backends.cudnn.deterministic = False

# enable auto-tuning (default = False)
torch.backends.cudnn.benchmark = True

https://pytorch.org/docs/stable/backends.html


A Note on Time Measurements
https://pytorch.org/docs/stable/backends.html#torch-backends-cudnn

Important aspects to consider:

• Be careful with measuring time on the host

• CUDA events are synchronization markers that 
can be used to monitor the device’s progress, to 
accurately measure timing, and to synchronize 
CUDA streams.

• Make sure you are measuring large enough 
workloads.

• Always perform multiple repetitions and average 
the results.

• Never measure the 1st API call and perform GPU 
warmup.

start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)

start.record()
# code to be measured
… 
end.record()

torch.cuda.synchronize()

elapsed_time_in_ms = start.elapsed_time(end)

https://pytorch.org/docs/stable/backends.html


UTILIZING A SINGLE GPU EFFICIENTLY –
MAXIMIZING OCCUPANCY & UTILIZATION

TENSOR CORE UTILIZATION



TENSOR CORE CAPABILITIES
FMA operations per clock per SM

CUDA Cores Tensor Cores

NVIDIA 
Arch. FP64 FP32 FP16 INT8 FP64 TF32 FP16 INT8 INT4

Volta 32 64 128 256 512

Turing 2 64 128 256 512 1024 8192

Ampere 
(A100) 32 64 256 256 64 512 1024 4096 16384

Ampere, 
sparse 1024 2048 4096 8192

Example - calculate TF32 throughput for A100:

108 (SMs) x 512 (multiply-add ops) x 2 (floating point ops) x 1.41 GHz (clock rate) = 156 TeraFLOPS



MIXED PRECISION TRAINING – THE IDEA
Example: FP32 training of Multibox SSD network

§ Histogram shows activation gradient magnitudes throughout FP32 training; 
both axes are logarithmic. 

§ Observations:
§ Dynamic range of FP16 would be sufficient to cover the entire histogram. J

§ Without “shifting” the histogram, half of the activations would be casted to 0, 
however. L

§ Idea: “shifting” = multiplication with a scale factor! 

§ Concern: Do I need to run a full training in order to find the scaling factor? 
à No, automatic mixed precision comes to the rescue! J



A NOTE ON DATA TYPES
Or why TF32 makes sense

§ Mixed precision training is mostly about the dynamic range and less 
about the precision:
§ exponent à dynamic range

§ significand field à precision

§ TF32 is a great compromise between FP32 (same range) and FP16 
(same precision)

§ TF32 is automatically enabled in NGC containers 

§ No code change is necessary!



AUTOMATIC MIXED PRECISION (AMP)
Concept

§ Maintain a primary copy of weights in FP32.

§ Initialize scaling factor S to a large value.

§ For each iteration:
§ Make an FP16 copy of the weights.

§ Forward propagation (FP16 weights and activations).
§ Multiply the resulting loss with the scaling factor S.

§ Backward propagation (FP16 weights, activations, and their gradients).

§ If there is an Inf or NaN in weight gradients:
§ Reduce S.

§ Skip the weight update and move to the next iteration.

§ Multiply the weight gradient with 1/S.

§ Complete the weight update (including gradient clipping, etc.).
§ If there hasn’t been an Inf or NaN in the last N iterations, increase S.

fo
rw

ar
d 

pa
ss

ca
st

cast

loss values

backpropagation

loss computation & scaling

network outputs

gradient values

cast

reverse scaling
& weight update

FP16 model copy

copy & 
cast

issues?



HOW TO USE IT?
in pytorch

§ Backward passes under autocast are not 
recommended. 

§ Backward ops run in the same dtype autocast chose 
for corresponding forward ops.

§ scaler.step() first unscales the gradients of the 
optimizer's assigned params.

§ If these gradients contain infs or NaNs, 
optimizer.step() is skipped.

# initialize gradient scaler
scaler = GradScaler()

# training loop
for epoch in epochs:

for input, target in data:

# zero gradient buffers
optimizer.zero_grad()

# forward pass with autocasting
with autocast():

output = model(input)
loss = loss_fn(output, target)

# call backward() on scaled loss
scaler.scale(loss).backward()

# update if no issues
scaler.step(optimizer)

# updates the scale for next iteration.
scaler.update()



AM I USING TENSOR CORES?
https://pytorch.org/docs/stable/profiler.html

from torch import profiler

prof_schedule = profiler.schedule(wait=2,
warmup=2,
active=5,
repeat=0)

callback =  profiler.tensorboard_trace_handler(‘./log‘)

prof = profiler.profile(schedule=prof_schedule,                                  
on_trace_ready=callback,                                  
record_shapes=False,                                  
with_stack=False)

prof.start()

for it in range(num_iterations):
# code to be profiled
...
prof.step()

prof.stop()

https://pytorch.org/docs/stable/profiler.html


DEALING WITH MEMORY CONSTRAINTS



Gradient accumulation

• Gradient accumulation is a mechanism to split the batch of samples — used for training a neural network — into 
several mini-batches of samples that will be run sequentially.

https://towardsdatascience.com/what-is-gradient-accumulation-in-deep-learning-ec034122cfa



Gradient accumulation

optimizer = ...

for epoch in range(...):    

for i, sample in enumerate(dataloader):        

inputs, labels = sample        

optimizer.zero_grad()

# Forward Pass        

outputs = model(inputs)        

# Compute Loss and Perform Back-
propagation

loss = loss_fn(outputs, labels)

loss.backward()

# Update Optimizer        
optimizer.step()

optimizer = ...

NUM_ACCUMULATION_STEPS = ...

for epoch in range(...):

 for idx, sample in enumerate(dataloader):

 inputs, labels = sample

 # Forward Pass

 outputs = model(inputs)

 # Compute Loss and Perform Back-
 propagation

 loss = loss_fn(outputs, labels)

 # Normalize the Gradients

 loss = loss / NUM_ACCUMULATION_STEPS

 loss.backward()

 if ((idx + 1) % NUM_ACCUMULATION_STEPS == 
     0) or (idx + 1 == len(dataloader)):

  optimizer.zero_grad()

  # Update Optimizer

  optimizer.step()



Activation Re-computation or gradient checkpointing
https://pytorch.org/docs/stable/checkpoint.html

• The memory intensive part of training deep neural networks is computing the gradient of the loss by 
backpropagation. 

• By checkpointing nodes in the computation graph defined by your model, and recomputing the parts of the graph in 
between those nodes during backpropagation, it is possible to calculate gradients at reduced memory cost. 

https://github.com/cybertronai/gradient-checkpointing



Activation Re-computation or gradient checkpointing



GPU Memory usage



WHAT’S ABOUT THE BATCH SIZE?



Why Batch size matters

• The most efficient performance when batch sizes and input/output neuron counts are divisible 

by a certain number, which typically starts at 8, but can be much higher as well. 

• That number varies a lot depending on the specific hardware being used and the dtype of the 

model:

• Tensor Core Requirements define the multiplier based on the dtype and the hardware. For example, for fp16 

a multiple of 8 is recommended, but on A100 it’s 64!

• When parameters are too small, there is also Dimension Quantization Effects to consider, this 

is where tiling happens, and the right multiplier can have a significant speedup.

• Furthermore, the bigger the batch size the less often the optimizer is run, the faster the 

training is (considering the same dataset length).



Batch size checklist
fully-connected layers

1. Choose the batch size and the number of inputs and outputs to be divisible by 4 
(TF32) / 8 (FP16) / 16 (INT8) to run efficiently on Tensor Cores. 

2. For best efficiency on A100, choose these parameters to be divisible by 32 (TF32) / 
64 (FP16) / 128 (INT8).

3. Especially when one or more parameters are small, choosing the batch size and the 
number of inputs and outputs to be divisible by at least 64 and ideally 256 can 
streamline tiling and reduce overhead.

4. Larger values for batch size and the number of inputs and outputs improve 
parallelization and efficiency.

5. As a rough guideline, choose batch sizes and neuron counts greater than 128 to 
avoid being limited by memory bandwidth.



The case of transformer

• Transformers are a popular neural network architecture used for sequence-to-sequence mapping tasks, for example 
for natural language translation. They use an encoder-decoder architecture making heavy use of attention, both to 
“self-attend” over input sequences, as well as to give the decoder access to the encoder’s context

• From a performance standpoint, Transformers fundamentally process all the tokens in an input sequence in parallel. 
That makes Transformers very amenable to highly parallel architectures such as GPUs, and leads to large GEMMs 
that, with a few simple guidelines, can take great advantage of Tensor Core acceleration.

See what happens when the vocabulary size is chosen without regard to alignment. FP16 data is used, so 
dimensions must be multiples of 8 for best alignment. 



PARALLELISM & COLLECTIVE 
COMMUNICATIONS



Execution times
Large models require large execution time

Narayanan, Deepak, et al. "Efficient large-scale language model training on GPU clusters using megatron-LM." Proceedings of the 
International Conference for High Performance Computing, Networking, Storage and Analysis. 2021.

FLOPS	per	iteration

Batch	
size

Sequence	length

Number	of	layers

Hidden	size

Vocabulary	
size



Adam 12 bytes
per parameter

Memory footprint



Data Parallelism - Model Parallelism

https://medium.com/nerd-for-tech/an-overview-of-pipeline-parallelism-and-its-research-progress-7934e5e6d5b8



Some notions
Collective Communications

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/operations.html



Some notions
Collective Communications

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/operations.html



Training a Neural Network
Multiple GPUs

CPU/GPU

ℒ(#𝑦, 𝑦) GPU ℒ(#𝑦, 𝑦)

CPU/GPU

CPU/GPU

𝑊["] = 𝑊["] − 	𝛼 ∗
𝜕ℒ

𝜕𝑊["]

𝑊[$] = 𝑊[$] − 	𝛼 ∗
𝜕ℒ

𝜕𝑊[$]

𝑊["] = 𝑊["] − 	𝛼 ∗
𝜕ℒ

𝜕𝑊["]

𝑊[$] = 𝑊[$] − 	𝛼 ∗
𝜕ℒ

𝜕𝑊[$]

𝑊[%] = 𝑊[%] − 	𝛼 ∗
𝜕ℒ

𝜕𝑊[%]
𝑊[%] = 𝑊[%] − 	𝛼 ∗

𝜕ℒ
𝜕𝑊[%]

W[1]

#𝑦

W[2]

W[3]

GPU

W[1]

#𝑦

W[2]

W[3]



Parallelism with PyTorch

• PyTorch provides several options for distributed training for applications that gradually scale 

from simple to complex:

1. Use single-device training if the data and model can fit in one GPU, and training speed is not a 

concern.

2. Use single-machine multi-GPU DataParallel to make use of multiple GPUs on a single machine to 

speed up training with minimal code changes.

3. Use single-machine multi-GPU DistributedDataParallel, if you would like to further speed up training 

and are willing to write a little more code to set it up.

4. Use multi-machine DistributedDataParallel and the launching script, if the application needs to scale 

across machine boundaries.

5. Use torch.distributed.elastic to launch distributed training if errors (e.g., out-of-memory) are 

expected or if resources can join and leave dynamically during training.



Data parallel vs distributed data parallel

• torch.nn.DataParallel (deprecated)
• The DataParallel package enables single-machine multi-GPU parallelism with the lowest 

coding hurdle. It only requires a one-line change to the application code. Although 
DataParallel is very easy to use, it usually does not offer the best performance because it 
replicates the model in every forward pass.

• torch.nn.parallel.DistributedDataParallel
• Compared to DataParallel, DistributedDataParallel requires one more step to set up, i.e., 

calling init_process_group. DDP uses multi-process parallelism. Moreover, the model is 
broadcast at DDP construction time instead of in every forward pass, which also helps to 
speed up training.

• torch.distributed.elastic
• With the growth of the application complexity and scale, failure recovery becomes a 

requirement. torch.distributed.elastic adds fault tolerance and the ability to make use of a 
dynamic pool of machines (elasticity).



Distributed data parallel

• DistributedDataParallel (DDP) implements 
data parallelism at the module level which can 
run across multiple machines. 

• Applications using DDP should spawn multiple 
processes and create a single DDP instance per 
process. 

• DDP uses collective communications in the 
torch.distributed package to synchronize 
gradients and buffers. 



Parallel launchers

# TORCHRUN

$ torchrun --standalone --nproc_per_node $GPUS_PER_NODE \

           --nnodes $NNODES your_training.py

# MPIRUN
$ export MASTER_ADDR=$(scontrol show hostnames \"$SLURM_JOB_NODELIST\" | head -n 1)

$ export MASTER_PORT=6000 

$ mpirun -np $NUM_OF_TOTAL_TASKS \ 

           -x PATH \

           -map-by numa python your_training.py

       

# SRUN

$ srun -p boost_usr_prod --time 01:00:00 -N 1 \

       --ntasks-per-node=4 --gres=gpu:4 \

       python your_training.py



Ranks



Distributed Data Parallel - DDP
FairScale: Fully Sharded Data Parallel - FSDP

For each GPU:

1. Get the shard of the model

2. Get the shard of the data

3. Local forward pass: Gather weights from the 
others

4. Local backward pass: Gather again weights 
from the others

5. Local weights shard update: Synchronize 
Gradients

https://fairscale.readthedocs.io/en/stable/api/nn/fsdp.html



Sharded Data Parallelism 
ZeRO: Zero Redundancy Optimizer

• ZeRO removes the redundancy across data parallel process

• Partitioning optimizer states, gradients and parameters (3 stages) for a progressive memory savings and 
Communication Volume



Sharded Data Parallelism 
Communication overheads



Sharded Data Parallelism 
GPT2 example: Enable ZeRO optimization

For more details see: https://aka.ms/deepspeed-gpt2

deepspeed train.py <args> \

--deepspeed_config ds_config.json

Python train.py <args>



Model Parallelism

•Pipeline (Inter-Layer) Parallelism
• Split sets of layers across multiple devices
• Layer 0,1,2 and layer 3,4,5 are on difference 

devices

• Tensor (Intra-Layer) Parallelism
• Split individual layers across multiple devices
• Both devices compute difference parts of 

Layer 0,1,2,3,4,5



TENSOR PARALLELISM



Tensor Parallelism

• Relatively simple to implement

• Easier to load-balance

• Less restrictive on the batch-size (avoids bubble issue in 

pipelining)

• Tensor parallelism works well for large matrices

• Example: Transformers have large GEMMs

✂



Transformers cell



79

Focus on the GeLU operation:

• Approach 1: Split X column-wise and A row-wise:

• Before GeLU we will need a communication point

• Approach 2: Split A column-wise:

• No communication is required

Chosen approach

MLP Tensor Partitioning



Tensor Parallelism implementations
Libraries examples

80



Megatron model parallelism
GPU Affinity Grouping Example

gpu_0 gpu_4 gpu_8 gpu_12

gpu_1 gpu_5 gpu_9 gpu_13

gpu_2 gpu_6 gpu_10 gpu_14

gpu_3 gpu_7 gpu_11 gpu_15

Node_0 
(NVSwitch/Nvlink) 

Node_1
(NVSwitch/Nvlink) 

https://github.com/NVIDIA/Megatron-LM

Neural Network: 4 layers
Hardware: 2 nodes , 8 GPUs per node
• Tensor parallel = 2
• Pipeline parallel = 4
• Data parallel = 2

https://github.com/NVIDIA/Megatron-LM


Megatron model parallelism
GPU Affinity Grouping Example

gpu_0 gpu_4 gpu_8 gpu_12

gpu_1 gpu_5 gpu_9 gpu_13

gpu_2 gpu_6 gpu_10 gpu_14

gpu_3 gpu_7 gpu_11 gpu_15

Node_0 
(NVSwitch/Nvlink) 

Node_1
(NVSwitch/Nvlink) 

pipeline-model-parallel group 0

pipeline-model-parallel group 1

pipeline-model-parallel group 2

pipeline-model-parallel group 3

Te
ns

or
-m

od
el

-
pa

ra
ll

el
-g

ro
up

 0
Te

ns
or

-m
od

el
-

pa
ra

ll
el

-g
ro

up
 1

Te
ns

or
-m

od
el

-
pa

ra
ll

el
-g

ro
up

 2
Te

ns
or

-m
od

el
-

pa
ra

ll
el

-g
ro

up
 3

Te
ns

or
-m

od
el

-
pa

ra
ll

el
-g

ro
up

 4

Te
ns

or
-m

od
el

-
pa

ra
ll

el
-g

ro
up

 5

Te
ns

or
-m

od
el

-
pa

ra
ll

el
-g

ro
up

 6
Te

ns
or

-m
od

el
-

pa
ra

ll
el

-g
ro

up
 7

https://github.com/NVIDIA/Megatron-LM

2 nodes , 8 GPUs per node
• Tensor parallel = 2
• Pipeline parallel = 4
• Data parallel = 2

Model 1

Model 0

https://github.com/NVIDIA/Megatron-LM


UTILIZING A SINGLE GPU EFFICIENTLY –
MINIMIZE LATENCY



OPTIMIZE DATA LOADING
“keep the pan filled”

§ If the dataset is small enough, consider moving it entirely onto the GPU.

§ Use pinned memory: Host to GPU (H2D) copies are much faster when they 
originate from pinned (page-locked) memory. This also works for individual 
tensors!

§ Tune the number of workers for loading the data in keep the GPU busy.

§ Tune prefetching, i.e., how many samples are prefetched by the dataloader.

§ For more information see https://pytorch.org/docs/stable/data.html

# in pytorch
loader = DataLoader(dataset, … ,

pin_memory=True,

num_workers=4,

prefetch_factor=2)

# pinning individual tensors
Tensor.pin_memory()

data prep 1

data prep 2

data prep 3

data prep 4

trai
n 1

trai
n 2

trai
n 3

trai
n 4

data prep 1

data prep 2

data prep 3

data prep 4

trai
n 1

trai
n 2

trai
n 3

trai
n 4

data prep 1

data prep 2

trai
n 1

trai
n 2

data prep 1

data prep 2

trai
n 1

trai
n 2

g
a
p

https://pytorch.org/docs/stable/data.html


85

Async data copy



Pre-fetching
PyTorch

https://www.jpatrickpark.com/post/prefetcher/



DATA FORMATS



Data Formarts
Packed Dataset

•Many file systems and network storage (including NGC dataset) don't handle well 
datasets with a vast number of small files (e.g., Imagenet stored as 1.3M individual 
.jpeg files), which adds an overhead of opening and closing files on top of data 
transfer over fabrics. 

• This problem becomes especially severe if multiple jobs access the same dataset 
concurrently. 

• Typical packed data formats include:
• WebDataset
• https://webdataset.github.io/webdataset/gettingstarted/

• LMDB
• http://www.lmdb.tech/doc/

• HDF5
• https://www.hdfgroup.org/solutions/hdf5/ 

https://webdataset.github.io/webdataset/gettingstarted/
http://www.lmdb.tech/doc/
https://www.hdfgroup.org/solutions/hdf5/


JIT, TORCHSCRIPT, XLA



JIT and TorchScript

• JIT is a dynamic tracing compiler that 
generates optimized code on the fly during 
runtime. 

• It works by tracing the execution of a 
PyTorch model during training and 
generates optimized code that can be 
reused during inference. 

• The advantage of JIT is that it can generate 
optimized code for a specific input size, 
making it very efficient for that input size. 

• JIT does not provide any static guarantees 
about the correctness of the generated 
code.

• TorchScript is a static graph compiler that 
generates optimized code ahead of time. 

• It works by converting a PyTorch model into 
a graph representation that can be 
optimized and compiled for execution on 
different devices. 

• The advantage of TorchScript is that it 
provides static guarantees about the 
correctness of the generated code, making 
it more reliable for production use.

• However, TorchScript requires a bit more 
effort upfront to convert the PyTorch model 
into a graph representation.



JIT and TorchScript

import torch
import torch.nn as nn

# Define a simple PyTorch model
class SimpleModel(nn.Module):

def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 1)

def forward(self, x):
return self.linear(x)

# Create an instance of the model
model = SimpleModel()

# Define some example input
input = torch.randn(1, 2)

# Use JIT to generate optimized code on the
# fly
jit_model = torch.jit.trace(model, input)

# Use TorchScript to generate optimized
# code ahead of time
script_model = torch.jit.script(model)

# Evaluate the models on the input
jit_output = jit_model(input)
script_output = script_model(input)

# Compare the outputs
print(jit_output)
print(script_output)



XLA
Accelerate Linear Algebra

§XLA stands for Accelerated Linear Algebra and it is a domain-specific compiler for linear 
algebra operations developed by Google. 

§ It is designed to optimize the performance of machine learning models by compiling and 
executing them on a variety of devices, including CPUs, GPUs, and TPUs (Tensor 
Processing Units).

§The main idea behind XLA is to generate highly optimized device-specific code for linear 
algebra operations. To achieve this, XLA performs a number of optimizations such as 
loop unrolling, kernel fusion, and memory layout transformations. XLA also supports 
automatic differentiation, which is an essential feature for training deep learning 
models.

§XLA can be used with PyTorch through the PyTorch/XLA package, which provides a 
PyTorch interface to XLA.



XLA

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as 
transforms

# Set up the device to use XLA
device = xm.xla_device()

# Define the CNN architecture
class Net(nn.Module):
[...]

# Create an instance of the model and
# move it to the XLA device
net = Net()
net.to(device)

# Create an instance of the optimizer and
# move it to the XLA device
optimizer = optim.SGD(net.parameters(), 
lr=lr)
optimizer = xla.optimizer(optimizer, 
device=device)

# Train the model
for epoch in range(num_epochs):
[...]

xm.optimizer_step(optimizer)

print('Finished training')



JIT, TORCHSCRIPT, XLA

§Performance depends on the specific use case and the hardware being used. 

§ In general
§JIT provides the most flexibility and can provide significant speedups for inference on 
a CPU or GPU. 

§TorchScript is optimized for deployment and can provide significant speedups and 
size reductions for models running on a variety of devices. 

§XLA is optimized for linear algebra operations and can provide significant speedups 
for training and inference on a variety of devices, particularly TPUs.



PROFILING YOUR CODE



AM I USING TENSOR CORES?
https://pytorch.org/docs/stable/profiler.html

from torch import profiler

prof_schedule = profiler.schedule(wait=2,
warmup=2,
active=5,
repeat=0)

callback =  
profiler.tensorboard_trace_handler(‘./log‘)

prof = profiler.profile(schedule=prof_schedule,                                  
on_trace_ready=callback,                                  
record_shapes=False,                                  
with_stack=False)

prof.start()

for it in range(num_iterations):
# code to be profiled
...
prof.step()

prof.stop()

https://pytorch.org/docs/stable/profiler.html


PYTORCH PROFILER
https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

§ Build-in in PyTorch

§ Allows to improve performance of your models visually

§ Features
§ Tensor Core Usage and Eligibility Detection
§ Kernel view
§ Stack view
§ Performance recommendations
§ …

# ssh into your machine
ssh -L 9999:localhost:9999 user@<server_ip>

# run docker container
$ docker run --gpus all -d -p 9999:9999 -v 
/path/to/my/project/:/workspace 
nvcr.io/nvidia/pytorch:21.09-py3

# install tensor board plugin
$ pip install torch_tb_profiler

# run application (example from repo)
$ python tiling_and_tensor_cores_pytorch.py

# start tensorboard
$ tensorboard --logdir=./log --port=9999

https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html


KERNEL FUSION



Fused CUDA Kernels
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/

https://huggingface.co/blog/megatron-training



NVIDIA Developer Program
The Community that Builds

Program Benefits:
Tools

• 550+ exclusive SDKs and models
• GPU-optimized software, model scripts, and containerized apps
• Early access programs and the NVIDIA Academic Hardware Grant Program*

Training
• Research papers, technical documentation, webinars, blogs, and news
• Technical training and certification opportunities
• 1,000s of technical sessions from industry events On-Demand

Community
• NVIDIA developer forums
• Exclusive meetups, hackathons, and events

Join the Community

* The Hardware Grant Program is available to qualified researchers and educators.

https://bit.ly/3STArA0


Many thanks!


