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3D Scene Understanding - Ingredients

Reconstruction/Geometry

Planes
Point cloud
3D mesh
Voxel map
Nerf / Implicit rep

Semantics

Segments
Semantic Instance Seg
3D bounding boxes
Panoptic

Layouts/Abstraction

Birds eye view
3D Scene graphs
Scene Captions



3D Scene Understanding - Applications

Interior design and
architecture

Augmented Reality Robotics Autonomous Driving Medical

Headsets /
Smartphone  gmart glasses



Current Smartphone AR capabilities for Scene Understanding

= =] [

3D Semantic Mesh, ARKit (with Lidar) Long range depth estimation / Niantic 3D Mapping (monocular)
Plane estimation, ARCore (monocular)

Currently available features:
3D Planes, Depth prediction, Persistent anchors/objects,
SLAM and 3D Mapping, 3D semantic segmentation,
3D Layouts (with lidar)



Augmented Reality: from headsets to smart glasses

Xreal Air AR glasses

( S—g

Vuzix Smart Glasses

Magic Leap 2

Microsoft HoloLens 2

.. Project Aria, Meta
Immersivity /

“smartness” Glass form factor
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’ Apple VisionPro Spatial Audio features (from VisionPro announcement)



Scene understanding for household/service robotics

RIRPORT"S

Incheon Airport Service AIRSTAR Robot

Going from this..


http://www.youtube.com/watch?v=Zn-EVQaRnCg&t=1

Scene understanding for household/service robotics

Incheon Airport Service AIRSTAR Robot TRl home helping robot

Going from this.. .to this


http://www.youtube.com/watch?v=6IGCIjp2bn4&t=43
http://www.youtube.com/watch?v=Zn-EVQaRnCg&t=1

Scene understanding for Autonomous Driving

é n ‘ Unedited Self-Driving

in New York City

Waymo Car in San Francisco MobilEye Car in New York City


http://www.youtube.com/watch?v=2CVInKMz9cA
http://www.youtube.com/watch?v=50NPqEla0CQ&t=185
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AR for Automotive and Navigation
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BLUE - VISION

AR and gaze control AR and navigation
(from BMW) (Blue Vision)



Reconstruction/Geometry 2. Open Set Semantics | <. . . Layouts/Abstraction

Planes Segments —__ Birdseye view

Point cloud Semantic Instance Seg 3. 3D Scene graphs
3D mesh 3D bounding boxes Scene Captions
Voxel map Panoptic :

1. Nerf / Implicit rep |<
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- Tutorial and project




(1/3)
Nerf for real applications



Explicit 3D data representation

Point Cloud it 3D Mesh

+ unordered list of 3D .§
coordinates

+  sparse, no topology

* can handle full 3D

collection of 3D vertices and
faces

sparse, with topology

can handle full 3D

Voxel map
« discretized 3D coordinates
on a regular grid
« organized, no topology
* can handle full 3D

Range (depth) map

1-channel image encoding
distances

organized, no topology
only 2.5D views




Occupancy Field and Signed Distance Field Surface implicitly

defined as f(x) =0

OF

(T)SDF

if p outside
otherwise

Y | —7, if poutside
flp) = {T, otherwise

e Special cases of a voxel map where each voxel stores:
o  OF: volume occupancy
o  SDF: distance to the nearest surface
e Common variations: Truncated SDF (TSDF), Unsigned DF (UDF)



3D Implicit representations

Learn a function f via a non-linear classifier whose decision boundary is the desired 3D surface

The function f approximates an Occupancy Field [1] or a Signed Distance Field [2]

Why?

e No discretization
e Arbitrary topology & resolution
e Low memory footprint

[1] L Mescheder et al, Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019
[2] JJ Park et al, DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019



Voxel Map Point Cloud 3D Mesh Implicit

L Mescheder et al, Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019



Summary of 3D implicit representations
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3D implicit representations are a type of data representation that uses a function to map from a domain
to a range. The function is typically learned by overfitting a neural network.

They tend to be more compact and flexible than traditional explicit representations

Applications

e Data storage / compression

e 3D classification / segmentation

e 3D reconstruction from single view
e 3D generation



Implicit representations: from occupancy to radiance fields

vzoed) . — lKe
(XYZ&J) (DED?:)

Spatial Viewing color density
Fo

location direction

e The network is a simple ReLU MLP that maps from location/view direction to color/density
e Density o describes how solid/transparent a 3D point is (can model, e.g., fog)
e Conditioning on view direction allows for modeling view-dependent effects

Input: posed images (no explicit 3D geometry or depth)
Task: Novel View Synthesis




Training of NeRFs

5D Input Output _
Position + Viewing direction Color + Density Volumetric
( 6,6) RGBo) rendering
X, V,Z,0, ———»["]D—»
Fv * ( ’ _\ Ray 1
a/.)' F@ Ray:2

Yool
\ ‘/‘}‘.\‘:‘\

|

g

Training image

Rendering (or
photometric) Loss

GM

2
Volumetric Rendering / H-B
Single Ray ; \j 2
d

*This is done in practice with 2 MLPs: one non-view dependant that regresses the density, the other that takes also the viewing direction and computes
the RGB (since density should not be view-dependant!)

Images from Mildenhall et al. NeRF. Commun. ACM.



https://dblp.org/db/journals/cacm/cacm65.html#MildenhallSTBRN22



http://www.youtube.com/watch?v=JuH79E8rdKc&t=10

Positional encoding and Fourier features

NeRF (Naive) NeRF (with positional encoding)

Fo (x.y,z,6,0) Fo (y(x,y,2), y(6,D))

Adding positional encodings to input coordinates (point and direction) helps recover fine details

Tancik et al.: Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. NeurlPS, 2020



A simple and powerful representation..

.. still limited for many real world applications



Nerf main limitations for real world applications

e Pose estimation is a critical step. Nerf requires dense pose coverage with accurate
pose estimation. Noise and sparsity highly affect quality.

e Rendering in real time is still a problem, especially on embedded/mobile settings
(e.g. smartphone)

Bl posc estimation HH Training % Rendering ‘

Nerfmeshing: real-time mobile
rendering of neural meshes

SPARF: Better poses under sparse
settings



SPARF: Neural Radiance Fields
from Sparse and Noisy Poses

CVPR 2023 - Highlight
Prune Truong, Marie Julie Rakotosaona, Fabian Manhardt, Federico Tombari

Website: https://prunetruong.com/sparf.github.io/
Code: https://github.com/google-research/sparf



https://prunetruong.com/sparf.github.io/
https://github.com/google-research/sparf

Novel-view synthesis given few images and noisy pose

Inputs Sparse images

e  Goal: Novel-view synthesis via Nerf with
access to only few wide-baseline images (as
low as 2 or 3), with noisy camera poses.

Q Noisy camera poses &

e Why? This is a realistic scenario, in e.g.
robotics, AR/VR or autonomous driving @ Training + rendering

Our approach SPARF


https://dblp.org/db/journals/cacm/cacm65.html#MildenhallSTBRN22

NeRFs: Challenge in the sparse-view setting

For realistic novel-view renderings, it requires:

+ e Lots of training images (dense coverage
of the 3d space)
Fixed e Known and accurate camera poses for
ground-truth the training images

camera poses

What
happens??

Input Sparse images

Q Noisy camera poses &



NeRFs: Challenge in the sparse-view setting

Input

Sparse input views with fixed
ground-truth poses:

= Overfit to the training views
e Degenerate geometry
e Bad novel view rendering




NeRFs: Challenge in the sparse-view setting

How do we get the poses? §1za:
— .
3:’15.0
O125
e The standard is to use COLMAP, a 111 10,5
structure-from-motion approach S 75
E 5.0
e On few, wide-baseline images, 2 25
COLMAP will most likely fail £ o0
e Even when using better matching,
the performance of COLMAP Fail
degrades as the number of views .
decrease 2
gl
C
e Pose errors will lead to errors in = .
the learnt scene and therefore in S
the renderings T 3

= COLMAP
—e— COLMAP SP-SG
SPARF (Ours)

2 4 6 8 10 12 14 16 18 20 22 24
Number of input views

—— COLMAP
—e— COLMAP SP-SG
SPARF (Ours)

2 4 6 8 10 12 .14 16_ 18 20 22 24
Number of input views



Contribution

We propose Sparse Pose Adjusting Radiance Field (SPARF),
a joint pose-NeRF training strategy.

Our approach produces realistic novel-view renderings given

e only few wide-baseline input images (as low as 2 or 3)
e with noisy camera poses.



Related works on NeRF from sparse images

Works which add geometric constraint to the NeRF
optimization

_ . DietNeRF
Works which add regularization (ICCV 2021)

losses to the NeRF optimization

DietNel RFS ,emantic
e i Minimizes the CLIP

embedding differences
between rendered and

VS training images
W R

| Depth Supervision for each keypoint
Lpepn = Y |[D = Dy |2

“ D :Rendored Depth
ZPN Dy..: Groundiruth Depth

4 Color Supervision for cach pixel
L Lcotor = ):Hé = Cg}.l‘z

€ :Rendered Color

Cg.. : Groundtruth Color

RegNeRF (CVPR 2022) InfoNeRF Supervises the rendered depth with sparse

(CVPR 2022) depth obtained from triangulation in COLMAP.
Depth-smOOthneSS loss on Ray entropy regularization to prevent

rendered images, overftting But runs COLMAP with ground-truth poses!

appearance regularization
on rendered images

They all assume fixed ground-truth poses. = this is unrealistic!



Related works on NeRF from noisy poses
CamP

BARF (ICCV 2021) + Follow-ups SCNeRF (ICCV 2021) (SIGGRAPH Asia 2023)

NeRF BARF (ours) rp rg Rotation

%@ 3 ®8 R Y

A Translation
Images + accurate camera poses Tmages +lmp rfect camera poses pBA xAB pB
E PAI P4B @ @ @
i N - Focal
3D scene representation 3D.s\cene ;presenta;;;; h 4
e Proposes to jointly finetune the e  Proposes the Projected Ray e CamP preconditions camera
camera poses with the NeRF Distance loss = Computes the optimization in camera-optimizing
e Follows a coarse to fine intersection of the corresponding Neural Radiance Field
. 2 rays, and measures the e Proposes using a proxy problem to
stratggy to avoid too f?St re-projection error. compute a whitening transform that
overfitting to a suboptimal e Proposed loss has a geometric eliminates the correlation between
solution basis but it impacts only the camera parameters and normalizes

learnt poses their effects



Our approach: SPARF

Main challenges:

o NeRF overfit to the few training images
without learning a meaningful geometry
B e [ e e N e Previous works use the photometric loss. It is

w Noisy ca:f:ra poses & applied to each image independently

camera poses
BARF
o

NeRF _ SPARF (Ours)
. l a

[ \‘
e

We propose a joint pose-NeRF training strategy.

We add two additional constraints into the NeRF
optimization, which rely on multi-view geometry
principles.
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Our approach: Multi-view correspondence loss

Step 1: Extract
(dense matches

surface

World frame

A B
P

Step 2: Joint pose-NeRF  P;
training with our multi-

J

| view correspondence loss (<=p)

Goal:

e Geometrically connect the training
images to convergence to a globally
consistency 3D solution over poses and

geometry.

e Direct supervision on rendered depth =
should be close to the real surface

:" Parameters optimized
< Camera pose estimates
JL Density prediction (F) ;

< GT camera poses

7T Projection operator

Matching pixels

A GT 3D point
(corresponding to )

A “Rendered” 3D point

X Pixel projection



Our approach: Depth-consistency loss
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Step 3: NeRF refinement with Unseen

L our depth consistency loss (e=p) VIEW L7y p)

Goal: Ensure the reconstructed scene is
consistent from any viewing
directions, including the ones without
RGB supervision.

Main idea: Use the rendered depth
from the training viewpoints to create
pseudo-depth supervision for novel,
unseen viewpoints.

We also include a visibility mask, to
tackle occlusion.

This optimizes over the neural radiance
field weights only. The poses are fixed
here.



Results: Experimental set-up

e Evaluation on multiple datasets: object-centered, forward-facing scenes, indoor non-forward-facing scenes.
e Sparse-view scenario: only 3 available. Results for 6 or 9 in the paper.

e Different ‘noisy poses’ initializations.

e Inthe paper, results with fixed ground-truth poses as well.

DTU dataset LLFF dataset Replica dataset

(DTU Informatics 2010, Aanaes et al) (2019, Straub et al.)




Results: Joint pose-NeRF training on DTU (3 views)
from noisy poses.

e DTU contains object-level scenes with wide-baseline views spanning a half hemisphere.

e Noisy poses created by synthetically perturbing the ground-truth poses with 15% of Gaussian noise.
e Initial rotation error = 15°

e Initial translation error = 71.0

Method Rot. | Trans. ]| PSNR SSIM+ LPIPS| DE|

BAREF [23] 10.33 515 10.71 (9.76) 0.43 (0.62) 0.59 (0.36) 1.90
RegBARF [23,31] | 11.20  52.8 10.38 (9.20) 0.45(0.62) 0.61 (0.38) 2.33
DistBARF [4,23] | 11.69  55.7 9.50 (9.15) 0.34 (0.76) 0.67 (0.36) 1.90
SCNeRF [20] 3.44 164 | 12.04(11.71) 0.45(0.66) 0.52(0.30) 0.85
SPARF (Ours) 1.81 5.0 17.74 (18.92) 0.71 (0.83) 0.26 (0.13) 0.12

[23] C.H. Lin, MW. Ma, A. Torralba, S. Lucey. Barf: Bundle-adjusting neural radiance fields. ICCV 2021

[20]Y. Jeong, S. Ahn, C. Choy, A. Anandkumar, M. Cho, J. Park. Self-calibrating neural radiance fields. ICCV 2021

[31] M. Niemeyer, J.T. Barron, B. Mildenhall, M.S. Sajjadi, A. Geiger, N. Radwan. Regnerf: Regularizing neural radiance fields for view synthesis
from sparse inputs. CVPR 2022.

[4] J.T. Barron, B. Mildenhall, D. Verbin, P.P. Srinivasan, P. Hedman. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. CVPR 2022



Initial poses

e
RegBARF SCNeRF SPARF (Ours)




Results: Joint pose-NeRF training on LLFF (3 views)
from identity poses.

e LLFF contains forward-facing views
e We start from identity poses and refine them along with training the NeRF

Rot. (°) | Trans. (x100) | | PSNR 1 SSIM 1 LPIPS |
BARF [23] 2.04 11.6 17.47 0.48 0.37
RegBARF [23,31] 1.52 5.0 18.57 0.52 0.36
DistBARF [4, 23] 5.59 26.5 14.69 0.34 0.49
SCNeRF [20] 1.93 11.4 16.52 0.42 0.47
SPARF (Ours) 1.15 4.9 19.38 0.57 0.35

[23] C.H. Lin, MW. Ma, A. Torralba, S. Lucey. Barf: Bundle-adjusting neural radiance fields. ICCV 2021

[20]Y. Jeong, S. Ahn, C. Choy, A. Anandkumar, M. Cho, J. Park. Self-calibrating neural radiance fields. ICCV 2021

[31] M. Niemeyer, J.T. Barron, B. Mildenhall, M.S. Sajjadi, A. Geiger, N. Radwan. Regnerf: Regularizing neural radiance fields for view synthesis
from sparse inputs. CVPR 2022.

[4] J.T. Barron, B. Mildenhall, D. Verbin, P.P. Srinivasan, P. Hedman. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. CVPR 2022






REPLICA Dataset. Inputs:
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DS-NeRF SCNeRF SPARF (Ours)




Limitations for real applications

e Rendering in real time is still a problem, especially on embedded/mobile
settings

Bl posc estimation HH Training Rendering




NeRFMeshing: Distilling Neural Radiance Fields
into Geometrically-Accurate 3D Meshes

Marie-Julie Rakotosaona Fabian Manhardt Diego Martin Arroyo
Michael Niemeyer Abhijit Kundu Federico Tombari




Nerf rendering dilemma

NeRFs are optimized exclusively for visual consistency -> lack of accurate underlying geometry

Fast rendering

MobileNerf
SNERG
MeRF
Gaussian Splatting

Underlying
geometry

MIP-Nerf
View-dependency

1. NerfMeshing extracts a neural mesh from Nerf, so that geometry can be used for shape
relighting, physics-based simulation, geometry-based compositionality, ..

Enables fast rendering, since meshes are much faster to render than radiance fields

3. While preserving view dependency

N


https://antimatter15.com/splat/

Method

Main challenges:
e NeRF density field does not represent a unique surface
e How to extract a surface from a pre-trained NeRF?

Main idea:
e Use NeRF rendered depth maps to infer:
o ASDF

o A set of view-dependent appearance features

L aa 1N
View dependent

NeRF SDF Appearance
rendered depths



NeRFMeshing

NeRFMeshing Training
NeRF Trainin Tnput Views E ~ Marching  Mesh
g Depth Maps extracted at n%cpﬂ']cl\vﬁ;: : Sﬂ?&% Cubes \

Input Views NeRF Model 16™, 50", 84™ Percentiles

EFFARSS | EIMrr S EFsCA | B
d— —c L5 & | ¥ _.EZHHH_.é

= 3z

Appearance
Model

We train two additional networks:
e Signed Surface Approximation Network (SSAN): trained to regress, from a given position x, a TSDF
value t, normal n and appearance features f
e Appearance model: takes predicted normal n and appearance features f together with the viewing
direction d to regress a view-dependant color ¢

Advantages:
e Small and modular method that can extract a mesh from any pre-trained NeRF
e Mesh representation can be used in computer graphics rendering pipelines with minimal changes
to include the view dependent network
e Appearance model allows faster rendering than Nerf



NeRFMeshing: Rendering Appearance

NeRFMeshing Training

Marching  Mesh
- Cubes .
Input Views NeRF Model 16" 50" 84™ Percentiles Depth Maps Model o 1

Lo ) -
oy - ol - g ksl

~

NeRF Training Input Views and SSAN

Depth Maps extracted at

Appearance
Model
=
9
= =
We use learned features on the mesh and Appearance S S
view directions to infer the appearance at - Model 2 g
rendering time o =2
S =
-l
View direction




Results



Results: Geometry Comparison
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Results: Unbounded Scene Rendering




Results: Object Rendering




Results: Physics Based Simulations




Conclusion, future directions

e Modular method that can be trained on any
pretrained NeRF

e Mesh format enables training in computer
graphics pipelines with minimal changes for
the view dependance

e Accurate mesh enables physics based
simulations

e Mesh are still limited in the way they can
represent e.g. thin structures and
specular/reflective surfaces

Ground Truth Ours



Future direction: online NeRF reconstruction/SLAM

e NEWTON: Neural View-Centric Mapping for On-the-Fly Large-Scale SLAM (paper)
o Neural Field mapping method which works with an dynamic loop-closing SLAM system
o Dynamically allocate, train and render multiple local NeRFs
o Strong robustness to large pose updates.

Live NeRF reconstruction in real-time

|

Trajectory

Novel View



https://arxiv.org/abs/2303.13654

(2/3)
Open Set 3D Semantic Segmentation



Semantics for 3D Scene Understanding
Typical Tasks

3D Semantic 3D Instance 3D Object
Segmentation Segmentation Detection

Assign a semantic class to each Predict instance masks and Detect the 3D bounding box of
point in a given 3D scene. semantic labels for each object in each object in a given 3D scene.

a given 3D scene.

68



3D Scene Understanding

Active field of research with significant progress over the last years

Q Browse State-of-the

[

Art  Datasets

Methods ~ More ~

3D Semantic Segmentation: htt

Browse State-of-the-Art

Datasets  Methods  More -
v g o
At s
@, 3p Instance Segmentation @ semantic segmentation
3D gmentation on ScanNet
Leaderboard Dataset Leaderboard Dataset
_— view | map@so_~| by | pate
View [ testmiou
Transformer [estmot ] by [ oate ] or " ntmodes y
. Te-- 100
¥
Sparse 3D CNN < _ o -
" - 0-CNN
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2 2
2 Z w0
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H
305 “
o seaptes
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. ' jan 23
; Jiro anm owim aew o w 2
2 s s e we B s whe e s
i Other models -+~ Models with highest mAP @ 50 B Y VL e i
Other models s Models with highest test miou
[
Y wntassea |
Filter: mm
i Edit Leaderboars
Showing 27 out of 29 rows. (clear all iters)
howing 22 out of 23 rows. (clear all ilters) .
esult Year  Togs
mAPE Mean . er Cade: {Resul fank  Model val  test ke
mAP @ mRec mAP@25 o mloU migy | Training  Paper
Rank Model 50 Data Code Result Year %85
@
Mask3D: Mask Transformer for 3D Semantic o0 5 2022 1 Mixap
552 780 870 Instance Segmentation 736 781 x Mix3D: Out-of-Context Data Augmentation for 30
1 MaskaD Scenes 0 =
Superpoint Transformer for 3D Scene o = 02 o
I R 775 779 .  SWin3D:APretrained Transformer Backbone for 30
2 spFormer 5 Indoor Scene Understanding O 3 2023
|SBNet: a 3D Point Cloud Instance —
egmentation Network with Instance-aware oy ) 2023 ‘SparseUNet 764 766 .,  TowardsLarge-scale 3D Representation Learning with
559 763 845 Sampling and Box-aware Dynamic Multi-dataset Point Prompt Training O 2 2023
3 I1SBNet - )
lution OctF
Convolutior ormer 757 766 x glanrmervonree'besMTransfarmersforBD Point.
ouds B
SoftGroup for 30 Instance Segmentationon @ 51 2022 O 3 2023
865 - d: O-CNN 7
4 SoftGrow 504 761 Point Clouds 740 762 x : "CNN: Octree-based Convolutional Neural Networks
Top-Down Beats Bottom-Up in 3D Instance r 3D Shape Analysis O 9 2017

s://[paperswithcode.com/sota/semantic-segmentation-on-scannet?metric=test%20mloU
3D Instance Segmentation: https://paperswithcode.com/sota/3d-instance-segmentation-on-scannetv2?metric=mAP%20%40%2050
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https://paperswithcode.com/sota/semantic-segmentation-on-scannet?metric=test%20mIoU
https://paperswithcode.com/sota/3d-instance-segmentation-on-scannetv2?metric=mAP%20%40%2050

3D Scene Understanding
Example 3D Instance Segmentations from Mask3D g [1]

[1] Schult et al. "Mask3D: Mask Transformer for 3D Instance Segmentation" ICRA'23

70



3D Scene Understanding
Example 3D Instance Segmentations from Mask3D g [1]

Input: 3D Point Cloud

[1] Schult et al. "Mask3D: Mask Transformer for 3D Instance Segmentation" ICRA'23

71


https://docs.google.com/file/d/1PN89-RBLMvnKhMu132ZqRdXDTqNaByFR/preview

3D Scene Understanding

Works well for semantic classes seen during training (closed-world setting)

Input 3D Scene Predicted 3D Instance Masks

[1] Schult et al. "Mask3D: Mask Transformer for 3D Instance Segmentation" ICRA'23

72


https://docs.google.com/file/d/1RQDHwyOei-fvhJIVdRpmrwikp40sNMup/preview
https://docs.google.com/file/d/1RPOUldXxobrG5Zu40gGD9H5_ObHzeXCg/preview

3D Scene Understanding: Limitations of Closed-Set Assumption
Example "in-the-wild" scene (link)

Input 3D Scene 3D Semantics 3D Instance Masks

®Couch  Window ®Stairs @ Chair
Table ®Dining Table  Backpack

73


https://mix3d-demo.nekrasov.dev/mask3d/visualizations/20230910_210406_textured_output/

3D Scene Understanding: Limitations of Closed-Set Assump &
Example "in-the-wild" scene (link)

Input 3D Scene 3D Semantics
Ceiling ®Nightstand ®Bench ® Couch

74


https://mix3d-demo.nekrasov.dev/mask3d/visualizations/20230912_183659_canons/
https://docs.google.com/file/d/1C8vyGLwdfjuUHZCSgBdTBWc2aA2S9im5/preview
https://docs.google.com/file/d/1C8vyGLwdfjuUHZCSgBdTBWc2aA2S9im5/preview
https://docs.google.com/file/d/15G0tYPORU5FoEuW84IP9y-wSIiQHTpmx/preview
https://docs.google.com/file/d/15G0tYPORU5FoEuW84IP9y-wSIiQHTpmx/preview

Towards Open-Set 3D Scene Understanding
using Visual-Language Models (VLM)

Visual-language models such as CLIP or ALIGN [1,2] consist of an Contrastive Training
image- and text-encoder. They are trained: sepper the 7’
- oninternet-scale image-caption pairs } l l l L

- in a contrastive manner

L LTy | LTy LT3 | . | LTy

If the text caption describes the image, then the encodings of ‘
both modalities (text and image) correlate, otherwise they do o
not.

l : it LTy | LTy [ LTs | . | IpyTy
Image T Ty | 3T, [T | . | I3Ty

Iy | |[INT) |INT2 [ INT3 | .. |ITN

[1] Radford et al. "Learning Transferable Visual Models From Natural Language Supervision" ICML'21
[2] Jia et al. “Scaling Up Visual and Vision-Language Representation” ICML'21



Towards Open-Set 3D Scene Understanding (cont.)
using Visual-Language Models (VLM)

We can use this mechanism for zero-short image classification:
1. Compute encoding of both the text and image
2. Take dot-product of normalized encodings
3. Image class corresponds to maximum response

Since VLMs are “trained on the internet”, they have seen numerous
and rare concepts which makes them great candidates for
open-set scene understanding.

Zero-shot Classification

(3) Use for zero-shot prediction

Image I
Encoder

T3

Ty
I;'T, [ 1Ty
A photo of
a g

T | Ty
Ty Ty

[1] Radford et al. "Learning Transferable Visual Models From Natural Language Supervision" ICML'21

[2] Jia et al. “Scaling Up Visual and Vision-Language Representation” ICML'21



2D-3D Ensemble

Open-Set 3D Semantic Segmentation Mt view Feattre Fusion

m - “brown chair”
OpenScene: 3D Scene Understanding with Open Vocabularies IF— ttoon g
H ] Arbit‘r”ary text queries
S

s|quiasug
as

OpenScene [3] obtains per-pixel multi-view open-set features from LSeg
or OpenSeg [2] and projects them onto 3D points of the scene point cloud.

§3D

fZDU:jj . f2D3D
:L: E—l—l =~ Inference
U
f3D °

e

1
1
I
1
:
I
How do we transfer open-set scene understanding to 3D scenes? input Images |- 888,
I s?
I
I
1
I
1
I
I
1

( Cosine Similarity e

A sparse 3D CNN is then trained to predict per-point open-set features — i o, |
distilled from 2D ones. 2D and 3D features are ensembled via CLIP
supervision, resulting in a scene with associated per-point open-set features.

[1] Li et al. “Language-driven Semantic Segmentation” ICLR’22
[2] Ghiasi et al. “Scaling open-vocabulary image segmentation with image-level labels” ECCV’'22

[3] Peng et al. "OpenScene: 3D Scene Understanding with Open Vocabularies" CVPR'23 27



Open-Set 3D Instance Segmentation
OpenMask3D: Open-Vocabulary 3D Instance Segmentation

the same class.

OpenMask3D [1] obtains per-segment open-set features by first segmenting the
3D scene into class-agnostic segments using Mask3D [2],

then the projected segments are cropped in 2D at multiple scales to obtain CLIP
features for each 3D seament.

@ Open-Vocabulary 3D Instance
Segmentation

Query: "TV on the ﬂ

3D Mask
wall across the table"

Proposal
Network

i W e o =

selecting ||2D segment per-crop per-mask
top k views)\ & crop CLIP features features

~| o

queryable features for eac}l

Loscl ROE-D faes mask;. .y 3D instance mask
@ Mask-Feature Computation for Each Instance
[1] Takmaz et al. "OpenMask3D: Open-Vocabulary 3D Instance Segmentation” arXiv'23 78

[2] Schult et al. "Mask3D: Mask Transformer for 3D Instance Segmentation" ICRA'23



Open-Set 3D Instance Segmentation
OpenMask3D: Open-Vocabulary 3D Instance Segmentation

Multiple object instances Rich query descriptions Long-tail objects

: ” , “the side table that that has
“footrest” A a blower vase on it”

“a comfy seat”

“an armchair with.-floral ..
print comfy seat”

[1] Takmaz et al. "OpenMask3D: Open-Vocabulary 3D Instance Segmentation" arXiv'23




What about open set with implicit representations?

80



Open-Set 3D Scene Understanding using Implicit Representations
Explicit v.s. Implicit Representations: Polygon Meshes and Point Clouds or NeRF Representations?

Can we use Implicit NeRF representations for Open-Set 3D Scene Understanding?
Idea: Ground CLIP features (or any other features from a pre-trained visual

encoding aligned with language) volumetrically inside NeRFs (in addition to color
and density).

(x,y,z,6,0) ﬁ(DDDGf)

Y Y Est. VLM
Spat.lal \{leW|pg feature from
location direction pre-trained visual
F ©) encoding

[1] Kerr et al. "LERF: Language Embedded Radiance Fields" ICCV'23
[2] Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views”, arXiv'23 81



Open-Set 3D Scene Understanding using Implicit Representations
LERF: Language Embedded Radiance Fields

LERF [1] distills CLIP features into a NeRF representation, based on CLIP encodings of multi-scale image patches.

Using the original CLIP image-encoder does not require fine-tuning
Since CLIP is a global feature (per patch/image), it includes a strategy to efficiently compute CLIP at the “right”

object scale for each scene component
Similar to DFF [2], LERF regresses also DINO [3] features to spatially regularize the CLIP space (DINO is sensitive to

T d

Training Image Image Patches Multiscale CLIP Features

[1] Kerr et al. "LERF: Language Embedded Radiance Fields" ICCV'23
[2] Kobayashi et al. “Decomposing NeRF for Editing via Feature Field Distillation” NeuRIPS'22
[3] Caron et al. “Emerging Properties in Self-Supervised Vision Transformers” ICCV'21
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https://docs.google.com/file/d/1KCwZUtTFjobCz0LykMjIQbEgpEijUZfh/preview

Open-Set 3D Scene Understanding using Implicit Representations
LERF: Language Embedded Radiance Fields

< o2

3D scene: Shoe Rack

b

“marie kondo” “vans” “dress shoes™

“the cookie bible”

[1] Kerr et al. "LERF: Language Embedded Radiance Fields" ICCV'23



Open-Set 3D Scene Understanding using Implicit Representations

Open-Set 3D Scene Segmentation with Rendered Novel Views

Contributions:
e Replace the global visual embedding (like CLIP, Align) with a pixel-wise embedding (LSeg, OpenSeg), achieving a
significant simplification of the framework (no more multiscale needed) and better quality on segment borders
e Use Nerf’s NVS capabilities to render new views where the original camera trajectory missed important scene
parts, based on where the extracted open-set features disagree

Uncertainty Existing and poses Novel views

[1] Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views” arXiv'23

84



Pre-trained VLM encoding: image/patch-, region/mask- and pixel-level

[ Image-text contrastive loss ] [ Per-pixel segmentation loss ]
o foé oxo LTI TP
Average
pooling
F z
HxWxD HxWxD
) t
Soneree | e 257 | || [P
A big stuffed bear Balloon, Bear, Class-speqmc
sitting on a bench Bench, Bus, segmentation
outside a store Frisbee, Tree annotations
CLIP[1] / ALIGN[2] LSeg [3]
(Figure taken from [3])

Region-word grounding loss ]

Aees I
KxD NxD

Mask-based pooling

P Segmentation
HxWxD '\ loss
‘

Word Cros;—
encoder attention
module
A big stuffed bear Class-agnostic
sitting on a bench --- segmentation
outside a store q NxD annotations

OpenSeg[4]

[1] Radford et al. "Learning Transferable Visual Models From Natural Language Supervision" ICML'21

[2] Jia et al. “Scaling Up Visual and Vision-Language Representation” ICML'21

[3] Li et al, Language-driven Semantic Segmentation, ICLR 22

[4] Ghiasi et al, Scaling Open-Vocabulary Image Segmentation with Image-Level Labels, ECCV 22



OpenSet 3D Scene Understanding: Object, Properties, Materials

Localize arbitrary objects, properties or materials using open-vocabulary text queries.

Properties

Materials

painting

"pillow on top of couch” | I {
,

m = El - light switches

L)

B
"artistic"

”n. L ” ” ”
s reflective 5
mirror | "7/l ciodl oft

ﬁ g’ d bed sheets

"cotton"

o

Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views” arXiv'23



OpenSet 3D Scene Understanding: Object, Properties, Materials

Localize arbitrary objects, properties or materials using open-vocabulary text queries.

“flower pot” ’ & Billew on couch”

“bed sheets”

Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views” arXiv'23



OpenSet 3D Scene Understanding: Object, Properties, Materials

Localize arbitrary objects, properties or materials using open-vocabulary text queries.

L
L

Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views” arXiv'23



OpenSet 3D Scene Understanding: Object, Properties, Materials

Localize arbitrary objects, properties or materials using open-vocabulary text queries.

“mussels”

Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views” arXiv'23
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OpenSet 3D Scene Understanding: Zero-Shot 3D Semantic Segmentation
Evaluation on Replica

[1] Kerr et al. "LERF: Language Embedded Radiance Fields" ICCV'23
[2] Peng et al. "OpenScene: 3D Scene Understanding with Open Vocabularies" CVPR'23
[3] Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views” arXiv'23

1



(3/3)
3D Scene Graphs



3D Scene Understanding with
Scene Graphs

Definition of semantic scene graphs (SSG)

SSG with images

SSG with 3D scenes: inference



Definition of semantic scene graphs




3D Scene Representations

Text

3D Reconstruction

A Bedroom consisting of a bed

with 3  llows and a desk with

an office chair. Next to the

bed there is a little

and in front of the bad is a
standing.

front

Scene Graph
oon | [N il
)
|
has
¢ y
next
{ )
stand

cabinet




Semantic scene graphs

Graph that relates the components of a scene

e Nodes: objects

e Edges: relationships between objects
o Action (holding, eating, riding, sitting, ...)
o Proximity (near, left of, front of, above, ...)
o Support (on, hanging on, ...)

o Comparison (same as, smaller than, ...) L
e Attributes: object properties | , : *
o color, shape, material, ... red T-shirt nAElfilnte,
man
e Recent trend: enrich nodes with bike riding +
o learned features |
o geometric features (bounding box) on
new

on \ +
road



Semantic scene graphs in 3D

ottoman sofa J
rectangular leather
brown brown
for sitting

relationships
(support,
comparative)

node
(object instance)

lying on

hand bag coffee table

rectangular
white

low
rectangular
wooden

attributes (shape, color)



From 3D scenes to 3D objects/shapes

Rather than representing components of a scene, a graph is associated with a single object or 3D
shape

Each node is typically a semantic component of the shape itself (e.g. armrests and legs for a
chair), while edges can represent geometric adjacency or semantic relationships

This can help generating different shapes from a given category in a semantically coherent way,
or interpolate between two given shapes (e.g. for retrieval applications)

target
image

source
point cloud

structured geometry interpolation in STRUCTURENET latent space

K. Mo et al, StructureNet: Hierarchical Graph Networks for 3D Shape Generation, Siggraph Asia 2019



3D Scenes Semantic scene graphs

pillow - pillow

A T A

has
t
bed

] [
next front
' |
stand cabinet

Memoie by Régisive Me Nbogbiidentilatetght



Why scene graphs?

Inference Generation

Multimodal scene retrieval Synthetic data generation
Scene change detection Indoor design / work placement
Compression Scene editing / manipulation

@ -~ @ -

S o=
|—1

S. Chaillou, ArchiGAN: a Generative Stack for
Apartment Building Design, nVidia, 2019




Scene Graph Processing

Source pixel

Convolution kernel

S~ _ (emboss) New pixel value

2D Convolutional Networks:
e Locality and Receptive Field
e Hierarchical Learning
e Parameter Sharing

Can we bring these nice properties from
2D convolutions also to Scene Graphs?




Use to populate

Exemplary Scene Graph Network - single layer graph - ready

for next layer

sky \

\

above —> | MLP1 | —>

J

—> | MLP2 | —>

man (\ propagate \A/h
same man!  faotyres through 1 —> | MLP2 | —>
man / triplets /JJ
* aggregate update
all features of each node
rldlng — MLP1 | — the same node
I —> | MLP2 —> I

‘ I I Output node and
edge features



Scene Graph Network - general
architecture

> Propagate Aggregate Update .. Propagate Aggregate Update >

1st “layer” n-th “layer”



Semantic scene graphs in images




2D Semantic scene graphs

From image to scene graph From scene graph to image

image object proposal

scene graph

Graph Layout prediction
Convolution

Downsam, ple

man < rightof <= man
+
throwing boy <= behind

+ +

frisbee on == patio

Noise Conv Upsample Conv )

of

face __

otntain —BRE— hoce Input: Scene graph Object Scene
S

riding features layout

Cascaded Refinement Network Output: Image

Inference

[Johnson CVPR’18] Computes images from semantic graphs (object class)

[Xu CVPR™7] Use region proposals t6 compute 3D [Ashual ICCV’19] Additionally employs visual features for objects
scene graph via an iterative message passing network

Closing the loop - From image to scene graph
and back [Dhamo20]

girl —)|r|d|ng |—> horse beside

graph / image -
- prediction grass <=on behlnd generation

e  leveraging the predicted semantic scene graph as

under—)tree
source . dified abstract input representation for the user
o interactive grap mocne . r can apply changes which are then ref] in
image modification image User can apply changes which are then reflected

the input image

Oron Ashual and Lior Wolf. Specifying object attributes and relations in interactive scene generation. ICCV 2019.

Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. CVPR 2018.

Danfei Xu, Yuke Zhu, Christopher Choi, Li Fei-Fei. Scene Graph Generation by Iterative Message Passing. CVPR 2017

H. Dhamo, A. Farshad, I. Laina, N. Navab, G. D. Hager, F. Tombari, C. Rupprecht. Semantic image manipulation using scene graphs. CVPR 2020



Can we use scene graphs as abstract
representation for 3D scenes, similarly to what we
do with images?

3D scene scan




Learning 3D Semantic Scene Graphs from 3D scenes

3DSSG Dataset 3D Graph Prediction Network Scene Retrieval
3D Semantic Scene Graph Learned Method for Semantic Scene Graph Appljcatiqn: 3D aﬂd 2D-3D Scene
Dataset available at Prediction based on PointNet and GCNs Retrievalin Changing
3DSSG.github.io Environments

Input 2D Image Input 2D Image

\

J. Wald, H. Dhamo, N. Navab, F. Tombari, Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions, CVPR 2020


http://3dssg.github.io




Learning 3D Semantic Scene Graphs

Fully-Connected Graph of Features

Input Point Set of a Scene

Etotal = /\obj‘cobj + Lpred L= _at(l - pt)7 logpt

Output 3D Scene Graph

none

none or multiple
predicate pre-
dictions per edge



Results Learning 3D Semantic Scene Graphs

behind (y)

A

close by
(GT: front, close by)

close by

lose by y
(GT: close by, behind),

cl
(GT: lying on)

close by close by
(GT: front, close by)/ (GT: close by, behind)

close by close by
(GT: close by) (GT: close by)

close by close by
GT: close by, left) XGT: right, close by) 'y
close by close by standing on
: close by, : clos GT: standi
standing on left, same as right, same as (OT:ciowby) (O el by) (GT: sancingion)
(GT: standing on) (GT: nonc) (GT: none) Y ¥
standing on
(GT: standing on)
standing on
(GT: standing on)
attached to standing on
(GT: attached to) (GT: standing on)
standing on
(GT: standing on) 4 V3
LY 4 > floor W
(GT: floor)
floor
(GT: floor)

left (x) right (x)

> chair
(GT: chair)

front (y) ¢

Relationship Prediction ~ Object Class Prediction ~ Predicate Prediction oF - of i for e (.t o)
Method R@50 R@100 R@5 R@10 R@3  R@5 sogdiogn -
® Relation Prediction Baseline 0.39 0.45 0.66 0.77 0.62 0.88 i
Single Predicate, ObjCls from PointNet Features ~ 0.37 043 0.68 0.78 0.42 0.58 @ vt ony /(G suached10), (G atached )
@ Multi Predicate, ObjCls from PointNet Features  0.40 0.66 0.68 0.78 0.89 0.93 > &

>

floor
Multi Predicate, ObjCls from GCN Features 0.30 0.60 0.60 0.73 0.79 0.91 bl



2D-3D Scene Retrieval

Input 2D Image

30D Scan Pool




Towards Persistent Scene Understanding: Graph-based
Change Detection

A byproduct of scene retrieval is semantic change detection (including changed relationships and objects).

Project page (including dataset): https://3DSSG.github.io



https://3dssg.github.io/

We have seen how scene graphs can be predicted offline
from a full 3D scan/partial view of a scene

Can we instead predict them incrementally and online, as
part of a SLAM pipeline?



Online Semantic Scene Graphs

3D Scene Graph
9,38

3D Scene Structure

RGB-D Input




SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D Sequences
Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, Federico Tombari
CVPR 2021

Input

3D Semantic Reconstruction + Scene Graph
vl

I!ﬂ floor

Frame-wise Online Prediction
cabinet

. counter
. other furn.

Semantic Scene Graphs model high-level semantics of objects and their relationships
Nodes: object classes
Edges: relationships between the connected nodes

Goal: incrementally predict the semantic scene graph with SLAM in real-time from an RGB-D sequence



Proposed framework

Input: a) RGB-D b) Incremental Geometric c) Extracted Point Cloud with .
. d) Properties
Images Segmentation Segments as Nodes
‘ ©
@ =mmmmm
]
0 o

e) Neighbor Graph

f) Node and
Edge Features

—
L
Bl

C

Output:
g) Graph / GNN FAT h) Incremental 3D Scene Graph
floor
cabinet s ‘
floor : :
K30 ¢ oW /"‘ Fuse . g
@-o- ® " d
e - ® .
table PR :
bag \ °‘ ........ .

e Incrementally build globally consistent 3D geometric segmentation from RGB-D sequence using [1]

o Extracts neighbor segments in view
e Compute

o anode feature on each segment using PointNet
o an edge features on each pair based on stat indicators between the two segments

(centroid distance, std of point cloud, ..)

o A GNN predicts object classes on each node and relationship on edges
o Each partial graph is fused into a global 3D scene graph

[1] Tateno, Keisuke, Federico Tombari, and Nassir Navab. "Real-time and scalable incremental segmentation on dense slam." 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2015.



Results




Input: RGB-D -> Monocular ?



Incremental 3D Semantic Scene Graph Prediction from RGB Sequences
Shun-Cheng Wu, Keisuke Tateno, Nassir Navab, Federico Tombari
CVPR 2023

Objective: estimate the 3D scene graph incrementally from a RGB sequence.

Input: RGB Incremental Entity Estimation (IEE) Semantic Scene Graph Prediction (SSGP)
sgquence [ | [ |
5. b) 2D Entity Prediction  ¢) 3D Entity Association d) Graph Extraction Node feature

Dresser

Hi

""'~.§ushion

@ Every frame
a) SLAM Recon. 2 Edge feature

*  Every
Keyframe

&
g
‘oug
abp3
U

Sl “ : Entity — : Neighbor Graph Edge
i [] : Keyframe ---: Visibility Graph Edge

124



1) Incremental Entity Estimation (IEE)

a) Sparse Mapping: ORB-SLAM3 [1]
b) 2D class agnostic instance segmentation via EntitySegmentation Network [2]

c) Extract 3D bounding boxes via ApproxMVBB [3]
d) Compute Neighbor Graph, where nodes are bounding boxes and connected to multiple keyframes

Input: RGB Incremental Entity Estimation (IEE)
sequence

b) 2D Entity Prediction ¢) 3D Entity Association d) Graph Extraction

G Every frame
a) SLAM Recon.

“ © : Entity — : Neighbor Graph Edge
: [ : Keyframe ---: Visibility Graph Edge

[1] Campos, C., Elvira, R., Rodriguez, J. J. G., Montiel, J. M., & Tardéds, J. D. (2021). Orb-slam3: An accurate open-source library for visual, visual-inertial, and

multimap slam. IEEE Transactions on Robotics, 37(6), 1874-1890.
[2] Qi, L., Kuen, J., Wang, Y., Gu, J., Zhao, H., Lin, Z., ... & Jia, J. (2021). Open-world entity segmentation. arXiv preprint arXiv:2107.14228.
[3] Chang, C. T., Gorissen, B., & Melchior, S. (2011). Fast oriented bounding box optimization on the rotation group SO (3, R). ACM Transactions on Graphics (TOG), 125

30(5), 1-16.



2) Semantic Scene Graph Predictor (SSGP)

e Node Feature: MVCNN [1] with Res18 (concatenated  pe——gu—— e e
features from the ROIs of all associated keyframes)

e Edge Feature: similar to SceneGraphFusion (various
heuristics between two bboxes) + relative pose
encoding

e GNN: same as in SceneGraphFusion

scene0038_02_table scene0012_00_door

Semantic Scene Graph Prediction (SSGP)

Node feature

Hi

Edge feature

f
O
oug
abp3
el

[1] Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-view convolutional neural networks for 3d shape recognition. In
Proceedings of the IEEE international conference on computer vision (pp. 945-953).




Recall(%) mIoU(% mPrec(%) mRecall(%)

Results o e Rel. Obj. Pred. Obij. Pre)d. Obj. Pre()i. Obj. Pred.
IMP [61] 81 31.6 956 19.7 24.3| 428 438 30.6 28.2

- . | VGIM [15] 111 381 954|256 269|472 438|391 33.6

_ & | Wald et al. [56] | 26.5 523 91.3| 28.1 19.4| 39.0 304 | 47.6 283
segmentation Wuet al. [59] | 31.4 584 920 32.6 325|457 329 | 482 656
Ours 54.5 75.8 95.9 |55.1 45.2|66.6 51.4(79.4 70.3

IMP [61] 287 588 69.4| 239 277|333 365|397 46.0

InSeg from s | VGEM [15] 309 68.6 734|375 319|485 418|572 496
denth data § Wald et al. [56] | 18.2 422 93.4| 194 239 338 37.7| 330 283
Wuetal. [59] | 39.3 67.3 82.8|41.7 311|521 34.7|59.3 61.6

Ours 42.2 679 89.6| 41.3 37.1(52.9 43.9| 591 56.7

IMP [61] 268 529 722|231 182|333 269|450 314

, o | VG [15] 20.9 57.6 743|266 240|391 315|419 467
EntityNetfrom & | wald et al. [56] | 12.3 31.0 81.6| 9.1 214|174 319 168 349
RGB data &|Wuetal 59 | 136 359 815 63 129|938 307|108 152
Ours 205 580 804|304 27.0| 401 38.7| 52.9 51.3

Ours (i) 31.2 59.0 80.6|30.6 26.4[41.8 37.9[54.9 505

Table 2. Evaluation of scene graph prediction task on 3RScan/3DSSG [56] with 20
objects and 8 predicate classes. We evaluate all methods on 3RScan with different input

types.



Incremental 3D Semantic Scene Graph Prediction from
RGB Sequences
ECCV22-166


https://docs.google.com/file/d/1pyilWUWzsO0UAQMPLXprVn6GU4A8azZ7/preview

Thanks for the attention!
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