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3D Scene Understanding - Ingredients 



3D Scene Understanding - Applications 

Augmented Reality Autonomous Driving Interior design and 
architecture

Smartphone
Headsets /

 Smart glasses

MedicalRobotics



Current Smartphone AR capabilities for Scene Understanding 

3D Semantic Mesh, ARKit (with Lidar) Niantic 3D Mapping (monocular)

Currently available features:
3D Planes,  Depth prediction,  Persistent anchors/objects,

SLAM and 3D Mapping, 3D semantic segmentation,
3D Layouts (with lidar)

Long range depth estimation / 
Plane estimation, ARCore (monocular)



Augmented Reality: from headsets to smart glasses

Project Aria, MetaMicrosoft HoloLens 2

Magic Leap 2

Xreal Air AR glasses

Glass form factor
Immersivity / 
“smartness”

Apple VisionPro

Vuzix Smart Glasses



Apple VisionPro Spatial Audio features (from VisionPro announcement)



Scene understanding for household/service robotics

Incheon Airport Service AIRSTAR Robot

Going from this.. 

http://www.youtube.com/watch?v=Zn-EVQaRnCg&t=1


Scene understanding for household/service robotics

TRI home helping robotIncheon Airport Service AIRSTAR Robot

Going from this.. ..to this

http://www.youtube.com/watch?v=6IGCIjp2bn4&t=43
http://www.youtube.com/watch?v=Zn-EVQaRnCg&t=1


Scene understanding for Autonomous Driving

Waymo Car in San Francisco MobilEye Car in New York City

http://www.youtube.com/watch?v=2CVInKMz9cA
http://www.youtube.com/watch?v=50NPqEla0CQ&t=185


AR Head-Up Display     Augmented windshield
wayray.com



AR for Automotive and Navigation

AR and gaze control 
(from BMW)

AR and navigation
(Blue Vision)
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Nerf for real applications

 



Explicit 3D data representation

Point Cloud
• unordered list of 3D 

coordinates
• sparse, no topology
• can handle full 3D

3D Mesh
• collection of 3D vertices and 

faces
• sparse, with topology
• can handle full 3D

Range (depth) map
• 1-channel image encoding 

distances
• organized, no topology
• only 2.5D views

Voxel map
• discretized 3D coordinates 

on a regular grid
• organized, no topology
• can handle full 3D

Sparse

Organized



Occupancy Field and Signed Distance Field Surface implicitly 
defined as f(x) = 0

● Special cases of a voxel map where each voxel stores: 
○ OF: volume occupancy 
○ SDF: distance to the nearest surface

● Common variations: Truncated SDF (TSDF), Unsigned DF (UDF)

OF (T)SDF

τ
𝐩



3D Implicit representations 

Learn a function f via a non-linear classifier whose decision boundary is the desired 3D surface

The function f approximates an Occupancy Field [1] or a Signed Distance Field [2]

Why?

● No discretization
● Arbitrary topology & resolution
● Low memory footprint

[1] L Mescheder et al, Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019
[2] JJ Park et al, DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, CVPR 2019



Voxel Map Point Cloud 3D Mesh Implicit
L Mescheder et al, Occupancy Networks: Learning 3D Reconstruction in Function Space, CVPR 2019



Summary of 3D implicit representations

3D implicit representations are a type of data representation that uses a function to map from a domain 
to a range. The function is typically learned by overfitting a neural network.

They tend to be more compact and flexible than traditional explicit representations

Applications

● Data storage / compression
● 3D classification / segmentation
● 3D reconstruction from single view
● 3D generation

(x, y, z)

FΘ

τ
(x,y,z)



Implicit representations: from occupancy to radiance fields

(x,y,z,θ,Φ)      (   ,   ,   ,σ)

● The network is a simple ReLU MLP that maps from location/view direction to color/density
● Density σ describes how solid/transparent a 3D point is (can model, e.g., fog)
● Conditioning on view direction allows for modeling view-dependent effects

Input: posed images (no explicit 3D geometry or depth)
Task: Novel View Synthesis 

Spatial 
location

Viewing 
direction

Est. 
color

Est. 
density

FΘ



Images from Mildenhall et al. NeRF. Commun. ACM. 

Volumetric 
rendering

Training of NeRFs
Output

Color + Density
5D Input

Position + Viewing direction 

Volumetric Rendering
 Single Ray

Rendering (or 
photometric) Loss

2

2

Training image

*This is done in practice with 2 MLPs: one non-view dependant that regresses the density, the other that takes also the viewing direction and computes 
the RGB (since density should not be view-dependant!)

*

σ

d

https://dblp.org/db/journals/cacm/cacm65.html#MildenhallSTBRN22


http://www.youtube.com/watch?v=JuH79E8rdKc&t=10


Positional encoding and Fourier features

Tancik et al.: Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. NeurIPS, 2020

Adding positional encodings to input coordinates (point and direction) helps recover fine details

FΘ (γ(x,y,z), γ(θ,Φ))FΘ (x,y,z,θ,Φ)



A simple and powerful representation..

.. still limited for many real world applications



Nerf main limitations for real world applications

● Pose estimation is a critical step. Nerf requires dense pose coverage with accurate 
pose estimation. Noise and sparsity highly affect quality.

● Rendering in real time is still a problem, especially on embedded/mobile settings 
(e.g. smartphone)

Pose estimation Training Rendering

SPARF: Better poses under sparse 
settings 

Nerfmeshing: real-time mobile 
rendering of neural meshes



SPARF: Neural Radiance Fields 
from Sparse and Noisy Poses
CVPR 2023 - Highlight 
Prune Truong, Marie Julie Rakotosaona, Fabian Manhardt, Federico Tombari

Website: https://prunetruong.com/sparf.github.io/ 
Code: https://github.com/google-research/sparf 

https://prunetruong.com/sparf.github.io/
https://github.com/google-research/sparf


● Goal: Novel-view synthesis via Nerf with 
access to only few wide-baseline images (as 
low as 2 or 3), with noisy camera poses. 

● Why? This is a realistic scenario, in e.g. 
robotics, AR/VR or autonomous driving

Novel-view synthesis given few images and noisy pose

NeRF. Mildenhall et al. Commun. ACM. 2020 Our approach SPARF

Training + rendering

Inputs

Noisy camera poses

Sparse images

https://dblp.org/db/journals/cacm/cacm65.html#MildenhallSTBRN22


NeRFs: Challenge in the sparse-view setting

For realistic novel-view renderings, it requires:

● Lots of training images (dense coverage 
of the 3d space)

● Known and accurate camera poses for 
the training images

Input
s

Noisy camera poses

Sparse images
What 

happens??

Fixed 
ground-truth 

camera poses

Input



NeRFs: Challenge in the sparse-view setting

Fixed ground-truth camera poses Sparse input views with fixed 
ground-truth poses:

⇒ Overfit to the training views
● Degenerate geometry
● Bad novel view rendering

Input



NeRFs: Challenge in the sparse-view setting
How do we get the poses?

COLMAP. Schonberger et al. CVPR 2016

● The standard is to use COLMAP, a 
structure-from-motion approach

● On few, wide-baseline images, 
COLMAP will most likely fail

● Even when using better matching, 
the performance of COLMAP 
degrades as the number of views 
decrease

● Pose errors will lead to errors in 
the learnt scene and therefore in 
the renderings



Contribution

We   propose   Sparse   Pose   Adjusting   Radiance   Field (SPARF),  
a  joint  pose-NeRF  training  strategy.    

Our  approach produces realistic novel-view renderings given 

● only few  wide-baseline  input  images (as  low  as  2 or 3) 
● with noisy camera poses. 



Works which add regularization 
losses to the NeRF optimization

Related works on NeRF from sparse images

They all assume fixed ground-truth poses. ⇒ this is unrealistic!

Works which add geometric constraint to the NeRF 
optimization

DS-NeRF (CVPR 2022) 

DietNeRF 
(ICCV 2021)

InfoNeRF 
(CVPR 2022)

RegNeRF (CVPR 2022)

Depth-smoothness loss on 
rendered images, 

appearance regularization 
on rendered images

Ray entropy regularization to prevent 
overfitting

Minimizes the CLIP 
embedding differences 
between rendered and 
training images

Supervises the rendered depth with sparse 
depth obtained from triangulation in COLMAP. 

But runs COLMAP with ground-truth poses!



Related works on NeRF from noisy poses
BARF (ICCV 2021) + Follow-ups SCNeRF (ICCV 2021) 

● Proposes the Projected Ray 
Distance loss ⇒ Computes the 
intersection of the corresponding 
2 rays, and measures the 
re-projection error. 

● Proposed loss has a geometric 
basis but it impacts only the 
learnt poses

● CamP preconditions camera 
optimization in camera-optimizing 
Neural Radiance Field

● Proposes using a proxy problem to 
compute a whitening transform that 
eliminates the correlation between 
camera parameters and normalizes 
their effects

CamP 
(SIGGRAPH Asia 2023) 

Rotation

Translation

Focal

● Proposes to jointly finetune the 
camera poses with the NeRF

● Follows a coarse to fine 
strategy to avoid too fast 
overfitting to a suboptimal 
solution



Our approach: SPARF
Main challenges:

● NeRF overfit to the few training images 
without learning a meaningful geometry 

● Previous works use the photometric loss. It is 
applied to each image independently 

We propose a joint pose-NeRF training strategy. 

We add two additional constraints into the NeRF 
optimization, which rely on multi-view geometry 
principles. 



Main idea: Minimize the 
re-projection error of extracted 
correspondences, using rendered 
depth and current pose estimates. 

Our approach: Multi-view correspondence loss

Goal: 

● Geometrically connect the training 
images to convergence to a globally 
consistency 3D solution over poses and 
geometry. 

● Direct supervision on rendered depth ⇒ 
should be close to the real surface

Main signal for the pose and NeRF training. 



Our approach: Depth-consistency loss

Goal: Ensure the reconstructed scene is 
consistent from any viewing 
directions, including the ones without 
RGB supervision. 

Main idea: Use the rendered depth 
from the training viewpoints to create 
pseudo-depth supervision for novel, 
unseen viewpoints. 

We also include a visibility mask, to 
tackle occlusion.

This optimizes over the neural radiance 
field weights only. The poses are fixed 
here. 



DTU dataset 

(DTU Informatics 2010, Aanaes et al)

Results: Experimental set-up 

LLFF dataset 

(BMVA 2021, Shafiei et al)

Replica dataset

(2019, Straub et al.)

● Evaluation on multiple datasets: object-centered, forward-facing scenes, indoor non-forward-facing scenes. 
● Sparse-view scenario: only 3 available. Results for 6 or 9 in the paper. 
● Different ‘noisy poses’ initializations. 
● In the paper, results with fixed ground-truth poses as well. 



● DTU contains  object-level scenes with wide-baseline views spanning a half hemisphere.
● Noisy poses created by synthetically perturbing the ground-truth poses with 15% of Gaussian noise. 
● Initial rotation error ≅ 15°
● Initial translation error ≅ 71.0

Results: Joint pose-NeRF training on DTU (3 views)    
from noisy poses. 

[23] C.H. Lin, M.W. Ma, A. Torralba, S. Lucey. Barf: Bundle-adjusting neural radiance fields. ICCV 2021
[20] Y. Jeong, S. Ahn, C. Choy, A. Anandkumar, M. Cho, J. Park. Self-calibrating neural radiance fields. ICCV 2021
[31] M. Niemeyer, J.T. Barron, B. Mildenhall, M.S. Sajjadi, A. Geiger, N. Radwan. Regnerf: Regularizing neural radiance fields for view synthesis 
from sparse inputs. CVPR 2022. 
[4] J.T. Barron, B. Mildenhall, D. Verbin, P.P. Srinivasan, P. Hedman. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. CVPR 2022



Inputs:

BARF RegBARF SCNeRF SPARF (Ours)
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B
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Results: Joint pose-NeRF training on LLFF (3 views)    
from identity poses. 

● LLFF contains forward-facing views
● We start from identity poses and refine them along with training the NeRF 

[23] C.H. Lin, M.W. Ma, A. Torralba, S. Lucey. Barf: Bundle-adjusting neural radiance fields. ICCV 2021
[20] Y. Jeong, S. Ahn, C. Choy, A. Anandkumar, M. Cho, J. Park. Self-calibrating neural radiance fields. ICCV 2021
[31] M. Niemeyer, J.T. Barron, B. Mildenhall, M.S. Sajjadi, A. Geiger, N. Radwan. Regnerf: Regularizing neural radiance fields for view synthesis 
from sparse inputs. CVPR 2022. 
[4] J.T. Barron, B. Mildenhall, D. Verbin, P.P. Srinivasan, P. Hedman. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. CVPR 2022
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REPLICA Dataset. Inputs:

BARF DS-NeRF SCNeRF SPARF (Ours)

RG
B
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Limitations for real applications

● Pose estimation is a critical step. Nerf requires dense pose coverage with 
accurate pose estimation. Noise and sparsity highly affect quality.

● Rendering in real time is still a problem, especially on embedded/mobile 
settings

Pose estimation Training Rendering



NeRFMeshing: Distilling Neural Radiance Fields
into Geometrically-Accurate 3D Meshes
Marie-Julie Rakotosaona    Fabian Manhardt    Diego Martin Arroyo

  Michael Niemeyer    Abhijit Kundu    Federico Tombari 



Nerf rendering dilemma

Fast rendering

View-dependency

MobileNerf
SNERG
MeRF

Gaussian Splatting

3D Mesh

MIP-Nerf

NerfMeshing

NeRFs are optimized exclusively for visual consistency -> lack of accurate underlying geometry

Underlying 
geometry

1. NerfMeshing extracts a neural mesh from Nerf, so that geometry can be used for shape 
relighting, physics-based simulation, geometry-based compositionality, ..

2. Enables fast rendering, since meshes are much faster to render than radiance fields
3. While preserving view dependency

https://antimatter15.com/splat/


Method
Main challenges:

● NeRF density field does not represent a unique surface 
● How to extract a surface from a pre-trained NeRF? 

Main idea:
● Use NeRF rendered depth maps to infer:

○ A SDF
○ A set of view-dependent appearance features

 

NeRF 
rendered depths

SDF View dependent 
Appearance



NeRFMeshing

We train two additional networks: 
● Signed Surface Approximation Network (SSAN): trained to regress, from a given position x, a TSDF 

value t, normal n and appearance features f
● Appearance model: takes predicted normal n and appearance features f together with the viewing 

direction d to regress a view-dependant color c

Advantages:
● Small and modular method that can extract a mesh from any pre-trained NeRF
● Mesh representation can be used in computer graphics rendering pipelines with minimal changes 

to include the view dependent network
● Appearance model allows faster rendering than Nerf



NeRFMeshing: Rendering Appearance

We use learned features on the mesh and 
view directions to infer the appearance at 
rendering time  

View direction
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Results



Results: Geometry Comparison 



Results: Unbounded Scene Rendering



Results: Object Rendering



Results: Physics Based Simulations



Conclusion, future directions

● Modular method that can be trained on any 
pretrained NeRF

● Mesh format enables training in computer 
graphics pipelines with minimal changes for 
the view dependance

● Accurate mesh enables physics based 
simulations 

● Mesh are still limited in the way they can 
represent e.g. thin structures and 
specular/reflective surfaces

 



Future direction: online NeRF reconstruction/SLAM

● NEWTON: Neural View-Centric Mapping for On-the-Fly Large-Scale SLAM (paper)
○ Neural Field mapping method which works with an dynamic loop-closing SLAM system
○ Dynamically allocate, train and render multiple local NeRFs
○ Strong robustness to large pose updates.

Live NeRF reconstruction in real-time

NICE-SLAM NEWTON (ours)
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https://arxiv.org/abs/2303.13654


(2/3)
Open Set 3D Semantic Segmentation

 



Typical Tasks

3D Semantic 
Segmentation
Assign a semantic class to each 
point in a given 3D scene.

3D Instance 
Segmentation
Predict instance masks and 
semantic labels for each object in 
a given 3D scene.

3D Object
Detection
Detect the 3D bounding box of 
each object in a given 3D scene.

Semantics for 3D Scene Understanding

68



Active field of research with significant progress over the last years  
3D Scene Understanding

69

3D Semantic Segmentation: https://paperswithcode.com/sota/semantic-segmentation-on-scannet?metric=test%20mIoU
3D Instance Segmentation: https://paperswithcode.com/sota/3d-instance-segmentation-on-scannetv2?metric=mAP%20%40%2050

Sparse 3D CNN
Transformer

https://paperswithcode.com/sota/semantic-segmentation-on-scannet?metric=test%20mIoU
https://paperswithcode.com/sota/3d-instance-segmentation-on-scannetv2?metric=mAP%20%40%2050


Example 3D Instance Segmentations from Mask3D 🎭 [1]
3D Scene Understanding

70

[1] Schult et al. "Mask3D: Mask Transformer for 3D Instance Segmentation" ICRA'23



Example 3D Instance Segmentations from Mask3D 🎭 [1]
3D Scene Understanding

71

[1] Schult et al. "Mask3D: Mask Transformer for 3D Instance Segmentation" ICRA'23

Input: 3D Point Cloud

Output: 3D Semantic Instances

https://docs.google.com/file/d/1PN89-RBLMvnKhMu132ZqRdXDTqNaByFR/preview


Works well for semantic classes seen during training (closed-world setting)
3D Scene Understanding

72

[1] Schult et al. "Mask3D: Mask Transformer for 3D Instance Segmentation" ICRA'23

Input 3D Scene Predicted 3D Instance Masks

https://docs.google.com/file/d/1RQDHwyOei-fvhJIVdRpmrwikp40sNMup/preview
https://docs.google.com/file/d/1RPOUldXxobrG5Zu40gGD9H5_ObHzeXCg/preview


Example "in-the-wild" scene (link)
3D Scene Understanding: Limitations of Closed-Set Assumption

73

Input 3D Scene 3D Instance Masks3D Semantics

●Couch ●Window  ●Stairs  ● Chair
●Table  ●Dining Table  ●Backpack 

https://mix3d-demo.nekrasov.dev/mask3d/visualizations/20230910_210406_textured_output/


Example "in-the-wild" scene (link)
3D Scene Understanding: Limitations of Closed-Set Assumption

74

Input 3D Scene 3D Semantics
●Ceiling ●Nightstand  ●Bench  ● Couch

Cannon?

https://mix3d-demo.nekrasov.dev/mask3d/visualizations/20230912_183659_canons/
https://docs.google.com/file/d/1C8vyGLwdfjuUHZCSgBdTBWc2aA2S9im5/preview
https://docs.google.com/file/d/1C8vyGLwdfjuUHZCSgBdTBWc2aA2S9im5/preview
https://docs.google.com/file/d/15G0tYPORU5FoEuW84IP9y-wSIiQHTpmx/preview
https://docs.google.com/file/d/15G0tYPORU5FoEuW84IP9y-wSIiQHTpmx/preview


using Visual-Language Models (VLM)
Towards Open-Set 3D Scene Understanding

75

Visual-language models such as CLIP or ALIGN [1,2] consist of an 
image- and text-encoder. They are trained: 

- on internet-scale image-caption pairs
- in a contrastive manner

If the text caption describes the image, then the encodings of 
both modalities (text and image) correlate, otherwise they do 
not.

[1] Radford et al. "Learning Transferable Visual Models From Natural Language Supervision" ICML’21
[2] Jia et al. “Scaling Up Visual and Vision-Language Representation” ICML’21

Contrastive Training 



using Visual-Language Models (VLM)
Towards Open-Set 3D Scene Understanding (cont.)

76

We can use this mechanism for zero-short image classification:
1. Compute encoding of both the text and image
2. Take dot-product of normalized encodings
3. Image class corresponds to maximum response

Since VLMs are “trained on the internet”, they have seen numerous 
and rare concepts which makes them great candidates for 
open-set scene understanding.  

[1] Radford et al. "Learning Transferable Visual Models From Natural Language Supervision" ICML’21
[2] Jia et al. “Scaling Up Visual and Vision-Language Representation” ICML’21

Zero-shot Classification



OpenScene: 3D Scene Understanding with Open Vocabularies
Open-Set 3D Semantic Segmentation

77

How do we transfer open-set scene understanding to 3D scenes?

OpenScene [3] obtains per-pixel multi-view open-set features from LSeg [1] 
or OpenSeg [2] and projects them onto 3D points of the scene point cloud.

A sparse 3D CNN is then trained to predict per-point open-set features 
distilled from 2D ones. 2D and 3D features are ensembled via CLIP 
supervision, resulting in a scene with associated per-point open-set features.

[1] Li et al. “Language-driven Semantic Segmentation” ICLR’22
[2] Ghiasi et al. “Scaling open-vocabulary image segmentation with image-level labels” ECCV’22
[3] Peng et al. "OpenScene: 3D Scene Understanding with Open Vocabularies" CVPR'23



OpenMask3D: Open-Vocabulary 3D Instance Segmentation
Open-Set 3D Instance Segmentation

78

For many applications it is important to differentiate between multiple instances of 
the same class.

OpenMask3D [1] obtains per-segment open-set features by first segmenting the 
3D scene into class-agnostic segments using Mask3D [2],
then the projected segments are cropped in 2D at multiple scales to obtain CLIP 
features for each 3D segment.

[1] Takmaz et al. "OpenMask3D: Open-Vocabulary 3D Instance Segmentation" arXiv'23
[2] Schult et al. "Mask3D: Mask Transformer for 3D Instance Segmentation" ICRA'23

“Bring me a mug”



OpenMask3D: Open-Vocabulary 3D Instance Segmentation
Open-Set 3D Instance Segmentation

79[1] Takmaz et al. "OpenMask3D: Open-Vocabulary 3D Instance Segmentation" arXiv'23

Multiple object instances Rich query descriptions Long-tail objects

“footrest”

“a comfy seat”

“an armchair with floral 
print comfy seat”

“the side table that that has 
a blower vase on it” “angel”

“pepsi”



What about open set with implicit representations?

80



Explicit v.s. Implicit Representations: Polygon Meshes and Point Clouds or NeRF Representations?
Open-Set 3D Scene Understanding using Implicit Representations

81

Can we use Implicit NeRF representations for Open-Set 3D Scene Understanding?

Idea: Ground CLIP features (or any other features from a pre-trained visual 
encoding aligned with language) volumetrically inside NeRFs (in addition to color 
and density).

[1] Kerr et al. "LERF: Language Embedded Radiance Fields" ICCV’23
[2] Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views”, arXiv’23

(x,y,z,θ,Φ)      (   ,   ,   ,σ, f)
Spatial 

location
Viewing 

direction
FΘ

Est. VLM
feature from 

pre-trained visual 
encoding



LERF: Language Embedded Radiance Fields
Open-Set 3D Scene Understanding using Implicit Representations

82

LERF [1] distills CLIP features into a NeRF representation, based on CLIP encodings of multi-scale image patches.
- Using the original CLIP image-encoder does not require fine-tuning
- Since CLIP is a global feature (per patch/image), it includes a strategy to efficiently compute CLIP at the “right” 

object scale for each scene component
- Similar to DFF [2], LERF regresses also DINO [3] features to spatially regularize the CLIP space (DINO is sensitive to 

location)

[1] Kerr et al. "LERF: Language Embedded Radiance Fields" ICCV’23
[2] Kobayashi et al. “Decomposing NeRF for Editing via Feature Field Distillation” NeuRIPS’22
[3] Caron et al. “Emerging Properties in Self-Supervised Vision Transformers” ICCV’21

https://docs.google.com/file/d/1KCwZUtTFjobCz0LykMjIQbEgpEijUZfh/preview


LERF: Language Embedded Radiance Fields
Open-Set 3D Scene Understanding using Implicit Representations

83[1] Kerr et al. "LERF: Language Embedded Radiance Fields" ICCV’23



Open-Set 3D Scene Segmentation with Rendered Novel Views
Open-Set 3D Scene Understanding using Implicit Representations

84

Contributions:
● Replace the global visual embedding (like CLIP, Align) with a pixel-wise embedding (LSeg, OpenSeg), achieving a 

significant simplification of the framework (no more multiscale needed) and better quality on segment borders 
● Use Nerf’s NVS capabilities to render new views where the original camera trajectory missed important scene 

parts, based on where the extracted open-set features disagree

[1] Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views” arXiv’23

Uncertainty Existing and novel poses Novel views



Pre-trained VLM encoding: image/patch-, region/mask- and pixel-level

CLIP[1] / ALIGN[2] LSeg [3] OpenSeg[4]
(Figure taken from [3])

[1] Radford et al. "Learning Transferable Visual Models From Natural Language Supervision" ICML’21
[2] Jia et al. “Scaling Up Visual and Vision-Language Representation” ICML’21
[3] Li et al, Language-driven Semantic Segmentation, ICLR 22
[4] Ghiasi et al, Scaling Open-Vocabulary Image Segmentation with Image-Level Labels, ECCV 22



Localize arbitrary objects, properties or materials using open-vocabulary text queries.
OpenSet 3D Scene Understanding: Object, Properties, Materials

86Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views” arXiv’23



Localize arbitrary objects, properties or materials using open-vocabulary text queries.
OpenSet 3D Scene Understanding: Object, Properties, Materials

87

“flower pot” “pillow on couch”

“vase”“art”“bed sheets”

“cotton”

Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views” arXiv’23



Localize arbitrary objects, properties or materials using open-vocabulary text queries.
OpenSet 3D Scene Understanding: Object, Properties, Materials

89Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views” arXiv’23



Localize arbitrary objects, properties or materials using open-vocabulary text queries.
OpenSet 3D Scene Understanding: Object, Properties, Materials

90

“steak”

“crab”“sea food”

“mussels”

Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views” arXiv’23



Evaluation on Replica
OpenSet 3D Scene Understanding: Zero-Shot 3D Semantic Segmentation

91

Cannon?

[1] Kerr et al. "LERF: Language Embedded Radiance Fields" ICCV’23
[2] Peng et al. "OpenScene: 3D Scene Understanding with Open Vocabularies" CVPR'23
[3] Engelmann et al. “Open-Set 3D Scene Segmentation with Rendered Novel Views” arXiv’23

OpenScene[2] OpenReNo[3]LERF[1]



(3/3) 
3D Scene Graphs

 



Definition of semantic scene graphs (SSG)

SSG with 3D scenes: inference

3D Scene Understanding with 
Scene Graphs

SSG with images



Definition of semantic scene graphs



3D ReconstructionText

A Bedroom consisting of a bed 
with 3 pillows and a desk with 
an office chair. Next to the 
bed there is a little nightstand 
and in front of the bad is a 
cabinet standing.

bed

pillowpillowpillow

Scene Graph

stand cabinet

has

next front

3D Scene Representations



sky

above

Semantic scene graphs
Graph that relates the components of a scene

● Nodes: objects 
● Edges: relationships between objects

○ Action (holding, eating, riding, sitting, ...)
○ Proximity (near, left of, front of, above, ...)
○ Support (on, hanging on, ...)
○ Comparison (same as, smaller than, ...)

● Attributes: object properties 
○ color, shape, material, …

● Recent trend: enrich nodes with 
○ learned features
○ geometric features (bounding box)

man

bike

T-shirtred

new

wearing

riding

road

on
on



lying on standing close by

node
(object instance)

attributes (shape, color)

relationships 
(support, 
comparative)

sofa

coffee table

low 
rectangular

wooden

leather
brown

ottoman

hand bag

rectangular
white

rectangular
brown
for sitting

Semantic scene graphs in 3D



From 3D scenes to 3D objects/shapes

● Rather than representing components of a scene, a graph is associated with a single object or 3D 
shape

● Each node is typically a semantic component of the shape itself (e.g. armrests and legs for a 
chair), while edges can represent geometric adjacency or semantic relationships

● This can help generating different shapes from a given category in a semantically coherent way, 
or interpolate between two given shapes (e.g. for retrieval applications)

K. Mo et al, StructureNet: Hierarchical Graph Networks for 3D Shape Generation, Siggraph Asia 2019



Semantic scene graphs3D Scenes

pillowpillowpillow

has

bed

next front

stand cabinet

Memory Expensive Memory LightweightTypically Rigid More FlexibleMore Abstract



Why scene graphs?

S. Chaillou, ArchiGAN: a Generative Stack for 
Apartment Building Design, nVidia, 2019

Scene change detection

Synthetic data generation

Indoor design / work placement

Multimodal scene retrieval

Compression

Inference Generation

Scene editing / manipulation



Scene Graph Processing

2D Convolutional Networks:
● Locality and Receptive Field
● Hierarchical Learning
● Parameter Sharing

man

sky

bike

T-shirtred

new

above

wearing

riding

road

on
on

Can we bring these nice properties from 
2D convolutions also to Scene Graphs?



Exemplary Scene Graph Network - single layer

sky

man

above MLP1

man

bike

riding

MLP2

update 
each node 

propagate
features through 

triplets

aggregate      
 all features of 
the same nodeMLP1

... MLP2

MLP2

Use to populate 
graph - ready 
for next layer

same man!

Output node and 
edge features



n-th “layer”

Propagate Aggregate Update

1st “layer”

Propagate Aggregate Update ...

Scene Graph Network - general 
architecture



Semantic scene graphs in images



From image to scene graph From scene graph to image

2D Semantic scene graphs

girl horse

tree

grass

riding

behind

under

on
graph 

prediction

source 
image

image 
generation

modified 
image

beside

interactive graph 
modification

[Xu CVPR’17]

[Johnson CVPR’18] Computes images from semantic graphs (object class)
[Ashual ICCV’19] Additionally employs visual features for objects  

Closing the loop - From image to scene graph 
and back [Dhamo20]

● Leveraging the predicted semantic scene graph as 
abstract input representation for the user

● User can apply changes which are then reflected in 
the input image

Oron Ashual and Lior Wolf. Specifying object attributes and relations in interactive scene generation. ICCV 2019.
Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. CVPR 2018.
Danfei Xu, Yuke Zhu, Christopher Choi, Li Fei-Fei. Scene Graph Generation by Iterative Message Passing. CVPR 2017
H. Dhamo, A. Farshad, I. Laina, N. Navab, G. D. Hager, F. Tombari,  C. Rupprecht. Semantic image manipulation using scene graphs. CVPR 2020

[Xu CVPR’17] Use region proposals to compute 3D 
scene graph via an iterative message passing network 



Can we use scene graphs as abstract 
representation for 3D scenes, similarly to what we 

do with images?

Image 3D scene scan



Learning 3D Semantic Scene Graphs from 3D scenes

3DSSG Dataset      3D Graph Prediction Network        

3D Semantic Scene Graph 
Dataset available at 
3DSSG.github.io

Learned Method for Semantic Scene Graph 
Prediction based on PointNet and GCNs

Application: 3D and 2D-3D Scene 
Retrieval in Changing 
Environments

Scene Retrieval

J. Wald, H. Dhamo, N. Navab, F. Tombari, Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions, CVPR 2020

http://3dssg.github.io




Learning 3D Semantic Scene Graphs

Input Point Set of a Scene  Fully-Connected Graph of Features       Output 3D Scene Graph

none or multiple 
predicate pre-

dictions per edge 
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...
guitar

floor

pillow

couch
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none
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right of



Results Learning 3D Semantic Scene Graphs
behind (y)

front (y)

right (x)left (x)



2D-3D Scene Retrieval



Towards Persistent Scene Understanding: Graph-based 
Change Detection
A byproduct of scene retrieval is semantic change detection (including changed relationships and objects).

Project page (including dataset):  https://3DSSG.github.io

https://3dssg.github.io/


Can we instead predict them incrementally and online, as 
part of a SLAM pipeline?

We have seen how scene graphs can be predicted offline 
from a full 3D scan/partial view of a scene



floor

Online Semantic Scene Graphs

RGB-D Input

3D Scene Structure 3D Scene Graph
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SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D Sequences
Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, Federico Tombari
CVPR 2021

Input

Frame-wise Online Prediction

3D Semantic Reconstruction + Scene Graph

Semantic Scene Graphs model high-level semantics of objects and their relationships
Nodes: object classes
Edges: relationships between the connected nodes

Goal: incrementally predict the semantic scene graph with SLAM in real-time from an RGB-D sequence



Proposed framework

● Incrementally build globally consistent 3D geometric segmentation from RGB-D sequence using [1]
● Extracts neighbor segments in view
● Compute 

○ a node feature on each segment using PointNet 
○ an edge features on each pair based on stat indicators between the two segments 

(centroid distance, std of point cloud, ..)
● A GNN predicts object classes on each node and relationship on edges
● Each partial graph is fused into a global 3D scene graph 

[1] Tateno, Keisuke, Federico Tombari, and Nassir Navab. "Real-time and scalable incremental segmentation on dense slam." 2015 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS). IEEE, 2015.



Results



Input: RGB-D -> Monocular ?



124

Objective: estimate the 3D scene graph incrementally from a RGB sequence.

Incremental 3D Semantic Scene Graph Prediction from RGB Sequences
Shun-Cheng Wu, Keisuke Tateno, Nassir Navab, Federico Tombari
CVPR 2023 



1) Incremental Entity Estimation (IEE)

● a) Sparse Mapping: ORB-SLAM3 [1]
● b) 2D class agnostic instance segmentation via EntitySegmentation Network [2]
● c) Extract 3D bounding boxes via ApproxMVBB [3]
● d) Compute Neighbor Graph, where nodes are bounding boxes and connected to multiple keyframes

[1] Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., & Tardós, J. D. (2021). Orb-slam3: An accurate open-source library for visual, visual–inertial, and 
multimap slam. IEEE Transactions on Robotics, 37(6), 1874-1890.
[2] Qi, L., Kuen, J., Wang, Y., Gu, J., Zhao, H., Lin, Z., ... & Jia, J. (2021). Open-world entity segmentation. arXiv preprint arXiv:2107.14228.
[3] Chang, C. T., Gorissen, B., & Melchior, S. (2011). Fast oriented bounding box optimization on the rotation group SO (3, ℝ). ACM Transactions on Graphics (TOG), 
30(5), 1-16. 125



2) Semantic Scene Graph Predictor (SSGP)

● Node Feature: MVCNN [1] with Res18 (concatenated 
features from the ROIs of all associated keyframes)

● Edge Feature: similar to SceneGraphFusion (various 
heuristics between two bboxes) + relative pose 
encoding

● GNN: same as in SceneGraphFusion

[1] Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-view convolutional neural networks for 3d shape recognition. In 
Proceedings of the IEEE international conference on computer vision (pp. 945-953). 126



Results

GT 
segmentation

InSeg from 
depth data

EntityNet from 
RGB data



https://docs.google.com/file/d/1pyilWUWzsO0UAQMPLXprVn6GU4A8azZ7/preview
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