

Interpretability for Deep Learning in Computer Vision

Moritz Boehle

Sukrut Rao

Mario Fritz CISPA Helmholtz

Bernt Schiele

Max Planck Institute for Informatics & Saarland University, Saarland Informatics Campus Saarbrücken

References: 'Requirements' (Gilpin et al., 2018), VGG-11 (Simonyan et al., 2014), Grad (Baehrens et al., 2010), Guided Backpropagation (Springenberg et al., 2014), Sanity check (Adebayo et al., 2018)

References: 'Requirements' (Gilpin et al., 2018), VGG-11 (Simonyan et al., 2014), Grad (Baehrens et al., 2010), Guided Backpropagation (Springenberg et al., 2014), Sanity check (Adebayo et al., 2018)

References: 'Requirements' (Gilpin et al., 2018), VGG-11 (Simonyan et al., 2014), Grad (Baehrens et al., 2010), Guided Backpropagation (Springenberg et al., 2014), Sanity check (Adebayo et al., 2018)

Overview

- Interpretability for Deep Learning in Computer Vision
 - Towards Better **Understanding** of **Attribution** Methods CVPR'22, arXiv'23 [2303.11884]
 - Inherently Interpretable CNN Networks CVPR'21, CVPR'22
 - Inherently Interpretable Transformer Networks arXiv'23 [2301.08571]
 - Using **Explanations** to **Guide Inherently Interpretable** Models ICCV'23

Towards Better Understanding of Attribution Methods

@ CVPR 2022 - extended version @ arXiv 2023

Sukrut Rao MPI Informatics

Moritz Boehle MPI Informatics

Bernt Schiele MPI Informatics

(Post-Hoc) Attribution Methods

Gradient (Simonyan et al., 2014), G. Backprop (Springenberg et al., 2015), IntGrad (Sundararajan et al., 2017), IxG (Shrikumar et al., 2017), Grad-CAM (Selvaraju et al., 2017), Grad-CAM (Selvaraju et al., 2017), Grad-CAM++ (Chattopadhyay et al., 2018), Ablation-CAM (Desai et al., 2020), Score-CAM (Wang et al., 2020), Layer-CAM (Jiang et al., 2021), Occlusion (Zeiler et al., 2014), RISE (Petsiuk et al., 2018)

Evaluating Attribution Methods: Object Localization

Cao et al. Look and Think Twice: Capturing Top-Down Visual Attention with Feedback Convolutional Neural Networks. ICCV 2015.

Evaluating Attribution Methods: Grid Pointing Game (GridPG)

Moritz Böhle, Mario Fritz, Bernt Schiele. Convolutional Dynamic Alignment Networks for Interpretable Classifications. CVPR 2021.

Evaluating Attribution Methods: Grid Pointing Game (GridPG)

• Expected Localization: (for top-left)

• Localization Metric:

 \sum

Multi-Layer Attribution Evaluation: ML-Att

@ mpn

Qualitative Evaluation

Well Localized

Poorly Localized

Example: RISE

Systematic Qualitative Evaluation: Aggregate Attribution Evaluation: AggAtt

0-2 2-5 5-50 50-95 95-98 98-100

прп

Grid Pointing Game (GridPG)

Challenge: Classification of each cell possibly influenced by others

Need to disentangle model contribution from attribution method

Guarantees that each classification head only influenced by its own grid cell

(For the topleft grid cell)

Results: DiFull

Interim Summary — Post-Hoc Attribution Methods

- Difficult to evaluate post-hoc attribution methods
 - unknown ground-truth of model-contribution
 - difficult to disentangle of model contribution & attribution method
- Attribution at the last layers relatively easy
 - reason, why Grad-CAM is used widely
 - but only the very last layer(s) explained
 - can be very misleading see our DiFull-setting

Overview

- Interpretability for Deep Learning in Computer Vision
 - ▶ Towards Better Understanding of Attribution Methods CVPR'22, arXiv'23 [2303.11884]
 - Inherently Interpretable CNN Networks CVPR'21, CVPR'22
 - Inherently Interpretable Transformer Networks arXiv'23 [2301.08571]
 - Using **Explanations** to **Guide Inherently Interpretable** Models ICCV'23

CoDA-Nets: Convolutional Alignment Networks for Interpretable Classification

@ CVPR 2021

B-cos Networks: Alignment is All We Need for Interpretability @ CVPR 2022

Moritz Boehle MPI Informatics

Mario Fritz CISPA Helmholtz

Bernt Schiele MPI Informatics

Motivation: we aim for Inherent Interpretability

References: 'Requirements' (Gilpin et al., 2018), VGG-11 (Simonyan et al., 2014), Grad (Baehrens et al., 2010), Guided Backpropagation (Springenberg et al., 2014), Sanity check (Adebayo et al., 2018)

B-cos Networks: Dynamic Linearity

B-cos Networks: Dynamic Linearity

B-cos Networks: Dynamic Linearity

Dynamic linearity allows us to faithfully summarise the model.

Alignment pressure

B-cos transformation vs. linear transformation

Linear transformation $f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} = ||\mathbf{w}|| ||\mathbf{x}|| \cos(\mathbf{x}, \mathbf{w})$

New transformation $B - \cos(\mathbf{x}; \mathbf{w}) = \underbrace{||\widehat{\mathbf{w}}||}_{=1} ||\mathbf{x}|| |\cos(\mathbf{x}, \mathbf{w})|^{\mathsf{B}} \times \operatorname{sgn}(\cos(\mathbf{x}, \mathbf{w}))$

ImageNet results

Compatible with standard architectures

B-cos networks achieve competitive accuracies

Measuring Interpretability via Grid Pointing Game

- To measure interpretability, we employ the grid pointing game
- In particular:
 - evaluate models on synthetic image grid
 - measure how well an explanation *localises* the correct image grid (score $s = \frac{A_i^+}{\sum_j A_j^+}$ with A_i^+ the positive attribution to subimage *i*)

Input image	lawn mower	cab	Egyptian cat	jacamar
	5			
			*	Ţ

ImageNet results

Input image	lawn mower	cab	Egyptian cat	jacamar
	1)			
			*	Ţ

Gradient (Baehrens (2010)), DeepLIFT (Shrikumar (2017)), Input x Gradient (cf. Adebayo (2018)), IntGrad (Sundararajan (2017)), RISE (Petsiuk, 2018), LIME (Ribeiro, 2016), GradCam (Ramprasaath et al. (2017))

Visualisations: intermediate neurons

Interim Summary

- Deep Neural Network explanations need to be faithful & interpretable
 - for faithfulness: B-cos is designed to be **dynamic linear**
 - for interpretability: B-cos induces alignment pressure
- The resulting networks are competitive classifiers...
- ... and provide interpretable explanations for their decisions

Overview

- Interpretability for Deep Learning in Computer Vision
 - Towards Better **Understanding** of **Attribution** Methods CVPR'22, arXiv'23 [2303.11884]
 - Inherently Interpretable CNN Networks CVPR'21, CVPR'22
 - Inherently Interpretable Transformer Networks arXiv'23 [2301.08571]
 - Using **Explanations** to **Guide Inherently Interpretable** Models ICCV'23

÷

- Tokeniser + MLP + Classifier
 - interpret as CNNs, convert to B-cos CNNs
- Self-Attention (SA) is dynamic linear

 $SA(\mathbf{X}) = \mathbf{A}(\mathbf{X}) \mathbf{V} \mathbf{X} = \mathbf{W}(\mathbf{X}) \mathbf{X}$

W(X)

- For this talk:
 - for Tokenisation, use L layers of pretrained+frozen B-cos DenseNet-121

Dynamic Linear Transformation

 $\mathbf{W}(\mathbf{x}) = \mathbf{W}^{^{\mathrm{Class}}}(\mathbf{x}) \prod_{l=1}^{^{L}} \left(\mathbf{W}_{l}^{^{\mathrm{MLP}}}(\mathbf{x}) \mathbf{W}_{l}^{^{\mathrm{Att}}}(\mathbf{x}) \right) \mathbf{W}^{^{\mathrm{Tokens}}}(\mathbf{x})$

Results — classification accuracy

• Results — classification accuracy

• Results — classification accuracy

• Results — classification accuracy

Results — classification accuracy

Qualitative Results — Interpretability

Results — interpretability metrics

Attention is not All You Need (for XAI) - Summary

- B-cos framework generally compatible with ViTs
 - Attention already dynamic linear SA(X) = W(X)X
 - remaining modules \rightarrow B-cos CNNs
- B-cos ViTs can be highly performant
 - similar results as with standard ViTs in comparable setting
- B-cos ViTs highly interpretable
 - similar interpretability as B-cos CNNs

Overview

- Interpretability for Deep Learning in Computer Vision
 - Towards Better **Understanding** of **Attribution** Methods CVPR'22, arXiv'23 [2303.11884]
 - ▶ Inherently Interpretable CNN Networks CVPR'21, CVPR'22
 - Inherently Interpretable Transformer Networks arXiv'23 [2301.08571]
 - Using Explanations to Guide Inherently Interpretable Models ICCV'23

Using Explanations to Guide Models @ ICCV'23

Sukrut Rao* MPI Informatics

Moritz Boehle* MPI Informatics

Amin Parchami-Araghi MPI Informatics

Bernt Schiele MPI Informatics

Motivation

прп

• Deep networks may rely on spurious features

• Idea: Guide models to be "right for the right reasons"

After Guidance

Related Work

- **Explicit Guidance:** Specify where the model should look
- Forms of Guidance:
 - Language Models (e.g. GALS [Petryk et al., 2022]):

Image Source: Petryk et al. On Guiding Visual Attention with Language Specification. CVPR 2022

Image Annotation Masks (e.g. RES [Gao et al., 2022]):

RES-L

Baseline Image Source: Gao et al. RES: A Robust Framework for Guiding Visual Explanation. KDD 2022

Our Focus

With *coarse* annotation masks, i.e. bounding boxes

Related Work: Guidance with Annotations

- Datasets are often:
 - **Small:** a few hundred or thousand images
 - Simple: binary classification
 - **Synthetic:** constructed, often not using natural images
- Attribution methods:
 - Fixed, usually GradCAM
 - Coarse grained, explain only the final layer
- Localization losses:
 - Often (e.g. with L_1 loss) enforce uniformity in mask

Ours

Large scale, multi-label classification datasets (PASCAL VOC, MS COCO)

Diverse set of attribution methods at multiple depths

Novel Energy loss, comparison against multiple loss functions

- Localization Losses from Prior Work:
 - L_1 Loss
 - Per-pixel Cross Entropy (PPCE) Loss
 - RRR* Loss (extended from RRR Loss)

@ mpn

Localization Losses from Prior Work

- *L*₁ Loss:
 - Minimize L_1 distance between normalised attributions and annotation
 - Guides model to attribute uniformly to existing highest attribution value

 $\mathcal{L}_{\text{loc},k} = \frac{1}{H \times W} \sum_{h=1}^{H} \sum_{w=1}^{W} \|M_{k,hw} - \hat{A}_{k,hw}^{+}\|_{1}$

Image

Attributions distributed uniformly in box

- Per-pixel cross entropy (PPCE) Loss:
 - Use cross-entropy loss at every pixel inside bounding box
 - No explicit constraint on attributions outside the box

Image


```
Not very effective
```

$$\mathcal{L}_{\text{loc},k} = -\frac{1}{\|M_k\|_1} \sum_{h=1}^{H} \sum_{w=1}^{W} M_{k,hw} \log(\hat{A}_{k,hw}^+)$$

- **RRR*** Loss:
 - Minimizes square of attributions outside box

 $\mathcal{L}_{\text{loc},k} = \sum_{h=1}^{H} \sum_{w=1}^{W} (1 - M_{k,hw}) \hat{A}_{k,hw}^2$

Image

Sparse attributions, localizes well qualitatively, not as effective quantitatively

- Localization Losses from Prior Work:
 - L_1 Loss
 - Per-pixel Cross Entropy (PPCE) Loss
 - RRR* Loss (extended from RRR Loss)
- Ours: Energy Loss

68

Energy Loss

- **Energy Loss**
 - Image Maximize fraction of attributions inside box (Energy Pointing Game metric)
 - Model not pressured to optimize uniformly

Attribution Map

Maximize *fraction* of

attribution inside

Box

Focus on Object Features

Bounding Box

After Guidance

L1 vs. Energy loss

Image

Attributions distributed uniformly in box

L1 vs. Energy loss

Image

Our Energy loss
Attribution Mar

ID II

Preliminaries: Visualizing Pareto Fronts

Best localisation, worst classification All checkpoints 😫 baseline 🔹 Energy 80 EPG Score (%) 75 Domina 70 65 60 55 Dominated 50 81 75 77 79 73F1 Score (%)

Best classification, worst localisation

Preliminaries: Visualizing Pareto Fronts

Quantitative Results — Preliminaries: Visualizing Pareto Fronts

Quantitative Results: PASCAL VOC

- So far:
 - Model guidance helps direct focus on object
 - Energy loss more effectively for focuses on object features as compared to L_1

• Challenge:

• Needs bounding box annotations for a large number of images — costly

• Reducing annotation cost:

- What if we have annotations only for a small fraction of training images?
- What if bounding box annotations are imprecise and noisy?

- What if we have annotations only for a small fraction of training images?
- **Experiment:** Use bounding box annotations of only 1% and 10% of training data

- Using 10% annotations performs very similar to using 100% annotations
- Gains even with 1% annotations

- What if bounding box annotations are imprecise and noisy? (Easier to annotate)
- Experiment:
 - Dilate bounding box to various degrees during training
 - Evaluate with original bounding boxes

• What if bounding box annotations are imprecise and noisy? (Easier to annotate)

• Energy loss robust, localisation worsens with L_1 loss

• What if bounding box annotations are imprecise and noisy? (Easier to annotate)

• Energy loss robust, localisation worsens with L_1 loss

- Experiment: Waterbirds-100, synthetically constructed
- Training Data:

Models often rely on spurious background features

Waterbird on Water

Challenging to classify (Worst group)

• Test Data:

Landbird on Land

Landbird on Water

Waterbird on Water

• Model guidance shifts focus to the object features, improves accuracy

• Guidance can control whether to focus on the foreground or background

• Guidance can control whether to focus on the foreground or background

Model	Conventional		Reversed			
	Worst	Overall	Worst	Overall		
Baseline	43.4 (±2.4)	68.7 (±0.2)	56.6 (±2.4)	80.1 (±0.2)		Guidance improves accuracy
Energy	56.1 (±4.0)	71.2 (±0.1)	62.8 (±2.1)	83.6 (±1.1)	<	
L_1	51.1 (±1.9)	69.5 (±0.2)	58.8 (±5.0)	82.2 (±0.9)		

Summary

• Problem:

- Models may reason incorrectly even if they perform well
- Model guidance can help, but so far not fully explored

• Contributions:

- Propose novel Energy loss
- Perform comprehensive evaluation on large datasets
- Show robustness and efficiency of approach
- Show utility against spurious correlations

• Outcomes:

- Energy loss effective in improving focus, even on large datasets
- Works with noisy or limited annotations
- Can improve model performance

Interpretability for Deep Learning in Computer Vision

Moritz Boehle

Sukrut Rao

Mario Fritz CISPA Helmholtz

Bernt Schiele

Max Planck Institute for Informatics & Saarland University, Saarland Informatics Campus Saarbrücken