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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-
pretability of deep neural networks (DNNs) by promoting
weight-input alignment during training. For this, we pro-
pose to replace the linear transforms in DNNs by our B-
cos transform. As we show, a sequence (network) of such
transforms induces a single linear transform that faith-
fully summarises the full model computations. Moreover,
the B-cos transform introduces alignment pressure on the
weights during optimisation. As a result, those induced lin-
ear transforms become highly interpretable and align with
task-relevant features. Importantly, the B-cos transform is
designed to be compatible with existing architectures and
we show that it can easily be integrated into common mod-
els such as VGGs, ResNets, InceptionNets, and DenseNets,
whilst maintaining similar performance on ImageNet. The
resulting explanations are of high visual quality and per-
form well under quantitative metrics for interpretability.
Code available at github.com/moboehle/B-cos.

1. Introduction
While deep neural networks (DNNs) are highly suc-

cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [30]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and
present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [25]) are accurately summarised by a linear transform
for every input [24]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [33, 44]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].
Instead of optimising the explanation method, in this work
we aim to optimise the DNNs to inherently provide an ex-
planation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-
sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-
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Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures
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Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures
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Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures
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Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures
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Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures
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Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures
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Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures

1
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Overview

• Interpretability for Deep Learning in Computer Vision 

‣ Towards Better Understanding of Attribution Methods — CVPR’22, arXiv’23 [2303.11884] 

‣ Inherently Interpretable CNN Networks — CVPR’21, CVPR’22 

‣ Inherently Interpretable Transformer Networks — arXiv’23 [2301.08571]  

‣ Using Explanations to Guide Inherently Interpretable Models — ICCV’23
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(Post-Hoc) Attribution Methods

• Major Issues 
‣ they are surprisingly different ! 

not all can be faithful ! 
‣ evaluation challenging, as 

ground truth attributions unknown
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Grad-CAM++ (Chattopadhyay et al., 2018), Ablation-CAM (Desai et al., 2020), Score-CAM (Wang et al., 2020), Layer-CAM (Jiang et al., 2021), Occlusion (Zeiler et al., 2014), RISE (Petsiuk et al., 2018)
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Evaluating Attribution Methods: Object Localization
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Evaluating Attribution Methods: Grid Pointing Game (GridPG)
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Evaluating Attribution Methods: Grid Pointing Game (GridPG)

• Expected Localization: 
(for top-left) 

• Localization Metric:
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Multi-Layer Attribution Evaluation: ML-Att
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Qualitative Evaluation
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Systematic Qualitative Evaluation: 
Aggregate Attribution Evaluation: AggAtt
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Results: GridPG
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Results: GridPG
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Challenge: Classification of each cell possibly influenced by others 

Need to disentangle model contribution from attribution method

Grid Pointing Game (GridPG)
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Full Disconnection (DiFull)
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Full Disconnection (DiFull)
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Results: DiFull
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Interim Summary — Post-Hoc Attribution Methods

• Difficult to evaluate post-hoc attribution methods 
‣ unknown ground-truth of model-contribution  
‣ difficult to disentangle of model contribution & attribution method  

• Attribution at the last layers relatively easy 
‣ reason, why Grad-CAM is used widely 
‣ but only the very last layer(s) explained 
‣ can be very misleading - see our DiFull-setting

24
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Overview

• Interpretability for Deep Learning in Computer Vision 

‣ Towards Better Understanding of Attribution Methods — CVPR’22, arXiv’23 [2303.11884] 

‣ Inherently Interpretable CNN Networks — CVPR’21, CVPR’22 

‣ Inherently Interpretable Transformer Networks — arXiv’23 [2301.08571]  

‣ Using Explanations to Guide Inherently Interpretable Models — ICCV’23
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Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures

1
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-

pretability of deep neural networks (DNNs) by promoting

weight-input alignment during training. For this, we pro-

pose to replace the linear transforms in DNNs by our B-

cos transform
1
. As we show, a sequence (network) of such

transforms induces a single linear transform that faith-

fully summarises the full model computations. Moreover,

the B-cos transform introduces alignment pressure on the

weights during optimisation. As a result, those induced lin-

ear transforms become highly interpretable and align with

task-relevant features. Importantly, the B-cos transform is

designed to be compatible with existing architectures and

we show that it can easily be integrated into common mod-

els such as VGGs, ResNets, InceptionNets, and DenseNets,

whilst maintaining similar performance on ImageNet. The

resulting explanations are of high visual quality and per-

form well under quantitative metrics for interpretability.

1. Introduction

While deep neural networks (DNNs) are highly suc-
cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and

present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-

sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-

1

Dynamic linearity Alignment pressure

Model-inherent linear map
References: 'Requirements' (Gilpin et al., 2018), VGG-11 (Simonyan et al., 2014), Grad (Baehrens et al., 2010), Guided Backpropagation (Springenberg et al., 2014), Sanity check (Adebayo et al., 2018)
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Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures

1
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-

pretability of deep neural networks (DNNs) by promoting

weight-input alignment during training. For this, we pro-

pose to replace the linear transforms in DNNs by our B-

cos transform
1
. As we show, a sequence (network) of such

transforms induces a single linear transform that faith-

fully summarises the full model computations. Moreover,

the B-cos transform introduces alignment pressure on the

weights during optimisation. As a result, those induced lin-

ear transforms become highly interpretable and align with

task-relevant features. Importantly, the B-cos transform is

designed to be compatible with existing architectures and

we show that it can easily be integrated into common mod-

els such as VGGs, ResNets, InceptionNets, and DenseNets,

whilst maintaining similar performance on ImageNet. The

resulting explanations are of high visual quality and per-

form well under quantitative metrics for interpretability.

1. Introduction

While deep neural networks (DNNs) are highly suc-
cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and

present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-

sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.
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We present a new direction for increasing the inter-

pretability of deep neural networks (DNNs) by promoting

weight-input alignment during training. For this, we pro-

pose to replace the linear transforms in DNNs by our B-

cos transform
1
. As we show, a sequence (network) of such

transforms induces a single linear transform that faith-

fully summarises the full model computations. Moreover,

the B-cos transform introduces alignment pressure on the

weights during optimisation. As a result, those induced lin-

ear transforms become highly interpretable and align with

task-relevant features. Importantly, the B-cos transform is

designed to be compatible with existing architectures and

we show that it can easily be integrated into common mod-

els such as VGGs, ResNets, InceptionNets, and DenseNets,

whilst maintaining similar performance on ImageNet. The

resulting explanations are of high visual quality and per-

form well under quantitative metrics for interpretability.

1. Introduction

While deep neural networks (DNNs) are highly suc-
cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and

present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-

sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.
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weight-input alignment during training. For this, we pro-

pose to replace the linear transforms in DNNs by our B-
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. As we show, a sequence (network) of such

transforms induces a single linear transform that faith-

fully summarises the full model computations. Moreover,

the B-cos transform introduces alignment pressure on the

weights during optimisation. As a result, those induced lin-

ear transforms become highly interpretable and align with

task-relevant features. Importantly, the B-cos transform is

designed to be compatible with existing architectures and

we show that it can easily be integrated into common mod-

els such as VGGs, ResNets, InceptionNets, and DenseNets,

whilst maintaining similar performance on ImageNet. The

resulting explanations are of high visual quality and per-

form well under quantitative metrics for interpretability.

1. Introduction

While deep neural networks (DNNs) are highly suc-
cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and

present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-

sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-
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Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-

pretability of deep neural networks (DNNs) by promoting

weight-input alignment during training. For this, we pro-

pose to replace the linear transforms in DNNs by our B-

cos transform
1
. As we show, a sequence (network) of such

transforms induces a single linear transform that faith-

fully summarises the full model computations. Moreover,

the B-cos transform introduces alignment pressure on the

weights during optimisation. As a result, those induced lin-

ear transforms become highly interpretable and align with

task-relevant features. Importantly, the B-cos transform is

designed to be compatible with existing architectures and

we show that it can easily be integrated into common mod-

els such as VGGs, ResNets, InceptionNets, and DenseNets,

whilst maintaining similar performance on ImageNet. The

resulting explanations are of high visual quality and per-

form well under quantitative metrics for interpretability.

1. Introduction

While deep neural networks (DNNs) are highly suc-
cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and

present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-

sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.
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We present a new direction for increasing the inter-

pretability of deep neural networks (DNNs) by promoting

weight-input alignment during training. For this, we pro-

pose to replace the linear transforms in DNNs by our B-

cos transform
1
. As we show, a sequence (network) of such

transforms induces a single linear transform that faith-

fully summarises the full model computations. Moreover,

the B-cos transform introduces alignment pressure on the

weights during optimisation. As a result, those induced lin-

ear transforms become highly interpretable and align with

task-relevant features. Importantly, the B-cos transform is

designed to be compatible with existing architectures and

we show that it can easily be integrated into common mod-

els such as VGGs, ResNets, InceptionNets, and DenseNets,

whilst maintaining similar performance on ImageNet. The

resulting explanations are of high visual quality and per-

form well under quantitative metrics for interpretability.

1. Introduction

While deep neural networks (DNNs) are highly suc-
cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and

present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-

sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-

pretability of deep neural networks (DNNs) by promoting

weight-input alignment during training. For this, we pro-

pose to replace the linear transforms in DNNs by our B-

cos transform
1
. As we show, a sequence (network) of such

transforms induces a single linear transform that faith-

fully summarises the full model computations. Moreover,

the B-cos transform introduces alignment pressure on the

weights during optimisation. As a result, those induced lin-

ear transforms become highly interpretable and align with

task-relevant features. Importantly, the B-cos transform is

designed to be compatible with existing architectures and

we show that it can easily be integrated into common mod-

els such as VGGs, ResNets, InceptionNets, and DenseNets,

whilst maintaining similar performance on ImageNet. The

resulting explanations are of high visual quality and per-

form well under quantitative metrics for interpretability.

1. Introduction

While deep neural networks (DNNs) are highly suc-
cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and

present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-

sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-
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Abstract

We introduce a new family of neural network models called

Convolutional Dynamic Alignment Networks (CoDA-Nets),

which are performant classifiers with a high degree of

inherent interpretability. The core building blocks are

Dynamic Alignment Units (DAUs) which are “dynamic lin-

ear” (i.e., input-dependent linear) and align their weight

vectors with task-relevant input patterns during optimisa-

tion. As a result, CoDA-Nets model the classification pre-

diction through a series of dynamic linear transformations,

which allows for linear decomposition of the prediction into

individual input contributions. Due to the alignment prop-

erty of the DAUs, the resulting contribution maps align with

discriminative input patterns. These model-inherent contri-

bution maps are of high visual quality and outperform exist-

ing attribution methods under quantitative metrics. Further,

our architectures constitute performant classifiers, achiev-

ing on par results to models from the ResNet and VGG

model families e.g. for CIFAR-10 and TinyImagenet.

1. Introduction
Neural networks are powerful function approximators and
are successfully applied to a wide range of tasks. How-
ever, they are notoriously difficult to interpret and extracting
useful explanations for their predictions is an open research
problem. Linear regression models, on the other hand, are
generally considered interpretable, because the contribu-

tion (‘the weighted input’) of every dimension to the out-
put is explicitly given. Interestingly, many modern neural
networks actually implicitly model the output as a linear
transformation of the input; a ReLU-based [21] neural net-
work, e.g., is a piece-wise linear function and thus fulfills
this property, cf. [20]. As was shown by [1], however, this
implicit linear transformation does not seem to reflect the
internal computations of the models well and fails simple
sanity checks when used as an attribution method.

In this work, we introduce a novel network architecture, the
Convolutional Dynamic Alignment Networks (CoDA-

Figure 1: Sketch of a 9-layer CoDA-Net. Every layer lin-
early transforms its input al�1 with a matrix Wl. This input-
dependent matrix Wl is produced by a set of dynamic alignment
units (DAUs). These units have a structural bias towards produc-
ing matrices Wl that align well with task-relevant patterns in their
input. Therefore, the global transformation matrix W0!9 aligns
well with discriminative features in a classification task. Locations
that positively (negatively) contribute to the j-th class (goldfinch)
are shown in red (blue).

Nets), for which the model-inherent contribution maps
are faithful projections of the internal computations and
thus good ‘explanations’ of the model prediction. There
are two main components to the interpretability of the
CoDA-Nets. First, the CoDA-Nets are dynamic linear,
i.e., they compute their outputs through a series of input-
dependent linear transformations, which are based on our
novel Dynamic Alignment Units (DAUs). Similar to lin-
ear regression models, the output can thus be decom-
posed into individual input contributions, see Fig. 1. Sec-
ond, the DAUs compute weight vectors that align with
discriminative patterns in their inputs. In combination, the
CoDA-Nets thus inherently produce contribution maps that
are ‘optimised for interpretability’: since each linear trans-
formation vector and thus their combination is optimised to
align with discriminative features, the contribution maps re-
flect the most discriminative features as used by the model.

With this work, we present a new direction for building
inherently more interpretable neural network architectures

1
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-

pretability of deep neural networks (DNNs) by promoting

weight-input alignment during training. For this, we pro-

pose to replace the linear transforms in DNNs by our B-

cos transform
1
. As we show, a sequence (network) of such

transforms induces a single linear transform that faith-

fully summarises the full model computations. Moreover,

the B-cos transform introduces alignment pressure on the

weights during optimisation. As a result, those induced lin-

ear transforms become highly interpretable and align with

task-relevant features. Importantly, the B-cos transform is

designed to be compatible with existing architectures and

we show that it can easily be integrated into common mod-

els such as VGGs, ResNets, InceptionNets, and DenseNets,

whilst maintaining similar performance on ImageNet. The

resulting explanations are of high visual quality and per-

form well under quantitative metrics for interpretability.

1. Introduction

While deep neural networks (DNNs) are highly suc-
cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and

present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-

sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-

1

[W1→L(x0)]c

. . .

B-cos Network

x0 x1 x2 x ... xL−1

Dynamic linearity allows us to faithfully summarise the model.
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Alignment pressure
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B-cos transformation vs. linear transformation

32

New transformation      B-cos(x; w) = | | ̂w | |

=1

| |x | | |cos(x, w) |B × sgn (cos(x, w))

Linear transformation       
 

                                     

f(x; w) = wT x = | |w | | | |x | | cos(x, w)
= | |w | | | |x | | |cos(x, w) | × sgn (cos(w, x))
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ImageNet results
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Measuring Interpretability via Grid Pointing Game

• To measure interpretability, we employ the grid pointing game 

• In particular: 
‣ evaluate models on synthetic image grid 
‣ measure how well an explanation localises the correct image grid  

(score  with  the positive attribution to subimage )s =
A+

i

∑j A+
j

A+
i i
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MaxOut operation were much easier to optimise. This could
be due to the ‘dying neuron’ problem, cf. [11], and could
potentially be remedied by better initialisation schemes.

3.3. Advanced B-cos networks

To test the generality of our approach, we evaluate how
integrating the B-cos transform into commonly used DNN
architectures affects their classification performance and in-
terpretability. In order to ‘convert’ such models to B-cos
networks we proceed as follows. First, every convolutional
kernel / fully connected layer is replaced by the correspond-
ing B-cos version with two MaxOut units (see Sec. 3.2.3).
Secondly, any other non-linearities (e.g., ReLU, MaxPool,
etc.), as well as any batch norm layers are removed to main-
tain the alignment pressure and to ensure that the model can
be summarised via a single linear transform.
Limitations. By normalising the weights and computing
the additional down-scaling factor (see Eq. (3)), the B-cos
transform naturally adds computational overhead, which we
observed to increase training and inference time by up to
60% in comparison to the baseline models. However, we
expect this cost to decrease significantly in the future with
an optimised implementation of the B-cos transform.

4. Experimental setting

Datasets. We evaluate the accuracies of several B-cos net-
works on the CIFAR-10 [17] and the ImageNet [9] datasets.
We use the same datasets for the qualitative and quantitative
evaluations of the model-inherent explanations.
Models. For the CIFAR10 experiments, we develop a sim-
ple fully-convolutional B-cos DNN, consisting of 9 con-
volutional layers, each with a kernel size of 3, followed
by a global pooling operation. We evaluate a network
without additional non-linearities as well as with MaxOut
units, see Sec. 3.2.3. For the ImageNet experiments, we
rely on the publicly available [24] implementations of the
VGG-11 [33], ResNet-32 [12], InceptionNet (v3) [38], and
DenseNet-121 [13] model architectures. We adapt those ar-
chitectures to B-cos networks as described in Sec. 3.3. For
details on the training procedure, see supplement (Sec. C).
Image encoding. We add three additional channels and en-
code images as [r, g, b, 1�r, 1�g, 1�b], with r, g, b2 [0, 1]
the red, green, and blue color channels. On the one hand,
this reduces a bias towards bright regions in the image4 [6].
On the other hand, colors with the same angle in the orig-

inal encoding—i.e., [r1, g1, b1] / [r2, g2, b2]—are unam-

biguously encoded by their angles under the new encoding.
Therefore, the linear transformation W1!l can be decoded
into colors just based on the angles of each pixel, see Fig. 1.
For a detailed discussion, see supplement (Sec. D).
4The network is trained to maximise its output, which is bounded by the
input norm. In the conventional encoding, however, black pixels, e.g.,
have a norm of zero and thus cannot contribute to the class logits.

lawn mower cab Egyptian cat jacamar

Ou
rs

Input image

Fig. 3. 2⇥2 example for the pointing game. Column 1: input
image. Columns 2 – 5: explanations for individual class logits.

Evaluating explanations. In order compare explanations
for the model decisions, we employ the grid pointing game

as proposed by [6]. That means we evaluate the trained
models on a synthetic 3x3 grid of images of different classes
and for each of the corresponding class logits measure how
much positive attribution an explanation method assigns to
the correct location in the grid; for a visualisation of a 2x2
grid, see Fig. 3. For this, we use the 4500 most confidently
and correctly classified images. We compare the model-
inherent contribution maps, see Eq. (15), against several
commonly employed post-hoc explanation methods under
two settings. First, we evaluate all methods on the B-cos
networks to investigate which method provides the best ex-
planation for the same model. Secondly, we further eval-
uate the post-hoc methods on pre-trained versions of the
original models (VGG, ResNet, DenseNet, InceptionNet).
This allows to compare explanations between different mod-

els and to assess the explainability gain obtained by con-
verting conventional models to B-cos networks. Lastly, all
non-perturbation-based attribution maps are smoothed by a
15⇥15 (3⇥3) kernel to better account for negative attribu-
tions in the localisation metric for ImageNet (CIFAR-10)
images, which is negligible with respect to the overall im-
age size of 224⇥ 224 (32⇥ 32).
Visualisations details. For generating the visualisations
of the linear transforms for individual neurons n in layer
l (cf. Figs. 1 and 9), we proceed as follows. First, we select
all pixel locations p(x,y) that positively contribute to the re-
spective neuron activation (e.g., class logit) as computed by
Eq. (15); i.e., {p(x,y) with (x, y) s.t.

P
c[s

l
n(x)](x,y,c)>0}

with c the 6 color channels (see image encoding above).
Then, we normalise the corresponding weights w(x,y)2R6

such that
P6

c=1[w(x,y)]c=3. Note that this normalisa-
tion maintains the angle of the weight vector, but pro-
duces values in the allowed range r, g, b2 [0, 1]. Since
the pixel color is uniquely determined by the angle of
[r, g, b, 1�r, 1�g, 1�b], we can directly visualise the
weights as color images. The opacity of a pixel is set to
min(||w(x,y)||2/p99.5, 1), with p99.5 the 99.5th percentile
over the weight norms ||w(x,y)||2 of all locations (x, y).

5. Results

In this section, we analyse the performance and inter-
pretability of B-cos networks. For this, in Sec. 5.1 we show
results of ‘simple’ B-cos networks without advanced ar-
chitectural elements such as skip connections or inception

5
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MaxOut operation were much easier to optimise. This could
be due to the ‘dying neuron’ problem, cf. [11], and could
potentially be remedied by better initialisation schemes.

3.3. Advanced B-cos networks

To test the generality of our approach, we evaluate how
integrating the B-cos transform into commonly used DNN
architectures affects their classification performance and in-
terpretability. In order to ‘convert’ such models to B-cos
networks we proceed as follows. First, every convolutional
kernel / fully connected layer is replaced by the correspond-
ing B-cos version with two MaxOut units (see Sec. 3.2.3).
Secondly, any other non-linearities (e.g., ReLU, MaxPool,
etc.), as well as any batch norm layers are removed to main-
tain the alignment pressure and to ensure that the model can
be summarised via a single linear transform.
Limitations. By normalising the weights and computing
the additional down-scaling factor (see Eq. (3)), the B-cos
transform naturally adds computational overhead, which we
observed to increase training and inference time by up to
60% in comparison to the baseline models. However, we
expect this cost to decrease significantly in the future with
an optimised implementation of the B-cos transform.

4. Experimental setting

Datasets. We evaluate the accuracies of several B-cos net-
works on the CIFAR-10 [17] and the ImageNet [9] datasets.
We use the same datasets for the qualitative and quantitative
evaluations of the model-inherent explanations.
Models. For the CIFAR10 experiments, we develop a sim-
ple fully-convolutional B-cos DNN, consisting of 9 con-
volutional layers, each with a kernel size of 3, followed
by a global pooling operation. We evaluate a network
without additional non-linearities as well as with MaxOut
units, see Sec. 3.2.3. For the ImageNet experiments, we
rely on the publicly available [24] implementations of the
VGG-11 [33], ResNet-32 [12], InceptionNet (v3) [38], and
DenseNet-121 [13] model architectures. We adapt those ar-
chitectures to B-cos networks as described in Sec. 3.3. For
details on the training procedure, see supplement (Sec. C).
Image encoding. We add three additional channels and en-
code images as [r, g, b, 1�r, 1�g, 1�b], with r, g, b2 [0, 1]
the red, green, and blue color channels. On the one hand,
this reduces a bias towards bright regions in the image4 [6].
On the other hand, colors with the same angle in the orig-

inal encoding—i.e., [r1, g1, b1] / [r2, g2, b2]—are unam-

biguously encoded by their angles under the new encoding.
Therefore, the linear transformation W1!l can be decoded
into colors just based on the angles of each pixel, see Fig. 1.
For a detailed discussion, see supplement (Sec. D).
4The network is trained to maximise its output, which is bounded by the
input norm. In the conventional encoding, however, black pixels, e.g.,
have a norm of zero and thus cannot contribute to the class logits.
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Fig. 3. 2⇥2 example for the pointing game. Column 1: input
image. Columns 2 – 5: explanations for individual class logits.

Evaluating explanations. In order compare explanations
for the model decisions, we employ the grid pointing game

as proposed by [6]. That means we evaluate the trained
models on a synthetic 3x3 grid of images of different classes
and for each of the corresponding class logits measure how
much positive attribution an explanation method assigns to
the correct location in the grid; for a visualisation of a 2x2
grid, see Fig. 3. For this, we use the 4500 most confidently
and correctly classified images. We compare the model-
inherent contribution maps, see Eq. (15), against several
commonly employed post-hoc explanation methods under
two settings. First, we evaluate all methods on the B-cos
networks to investigate which method provides the best ex-
planation for the same model. Secondly, we further eval-
uate the post-hoc methods on pre-trained versions of the
original models (VGG, ResNet, DenseNet, InceptionNet).
This allows to compare explanations between different mod-

els and to assess the explainability gain obtained by con-
verting conventional models to B-cos networks. Lastly, all
non-perturbation-based attribution maps are smoothed by a
15⇥15 (3⇥3) kernel to better account for negative attribu-
tions in the localisation metric for ImageNet (CIFAR-10)
images, which is negligible with respect to the overall im-
age size of 224⇥ 224 (32⇥ 32).
Visualisations details. For generating the visualisations
of the linear transforms for individual neurons n in layer
l (cf. Figs. 1 and 9), we proceed as follows. First, we select
all pixel locations p(x,y) that positively contribute to the re-
spective neuron activation (e.g., class logit) as computed by
Eq. (15); i.e., {p(x,y) with (x, y) s.t.

P
c[s

l
n(x)](x,y,c)>0}

with c the 6 color channels (see image encoding above).
Then, we normalise the corresponding weights w(x,y)2R6

such that
P6

c=1[w(x,y)]c=3. Note that this normalisa-
tion maintains the angle of the weight vector, but pro-
duces values in the allowed range r, g, b2 [0, 1]. Since
the pixel color is uniquely determined by the angle of
[r, g, b, 1�r, 1�g, 1�b], we can directly visualise the
weights as color images. The opacity of a pixel is set to
min(||w(x,y)||2/p99.5, 1), with p99.5 the 99.5th percentile
over the weight norms ||w(x,y)||2 of all locations (x, y).

5. Results

In this section, we analyse the performance and inter-
pretability of B-cos networks. For this, in Sec. 5.1 we show
results of ‘simple’ B-cos networks without advanced ar-
chitectural elements such as skip connections or inception
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Visualisations of W1→L (x)
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-
pretability of deep neural networks (DNNs) by promoting
weight-input alignment during training. For this, we pro-
pose to replace the linear transforms in DNNs by our B-
cos transform1. As we show, a sequence (network) of such
transforms induces a single linear transform that faith-
fully summarises the full model computations. Moreover,
the B-cos transform introduces alignment pressure on the
weights during optimisation. As a result, those induced lin-
ear transforms become highly interpretable and align with
task-relevant features. Importantly, the B-cos transform is
designed to be compatible with existing architectures and
we show that it can easily be integrated into common mod-
els such as VGGs, ResNets, InceptionNets, and DenseNets,
whilst maintaining similar performance on ImageNet. The
resulting explanations are of high visual quality and per-
form well under quantitative metrics for interpretability.

1. Introduction
While deep neural networks (DNNs) are highly suc-

cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and
present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-
sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-
pretability of deep neural networks (DNNs) by promoting
weight-input alignment during training. For this, we pro-
pose to replace the linear transforms in DNNs by our B-
cos transform1. As we show, a sequence (network) of such
transforms induces a single linear transform that faith-
fully summarises the full model computations. Moreover,
the B-cos transform introduces alignment pressure on the
weights during optimisation. As a result, those induced lin-
ear transforms become highly interpretable and align with
task-relevant features. Importantly, the B-cos transform is
designed to be compatible with existing architectures and
we show that it can easily be integrated into common mod-
els such as VGGs, ResNets, InceptionNets, and DenseNets,
whilst maintaining similar performance on ImageNet. The
resulting explanations are of high visual quality and per-
form well under quantitative metrics for interpretability.

1. Introduction
While deep neural networks (DNNs) are highly suc-

cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and
present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.
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the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract
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pose to replace the linear transforms in DNNs by our B-
cos transform1. As we show, a sequence (network) of such
transforms induces a single linear transform that faith-
fully summarises the full model computations. Moreover,
the B-cos transform introduces alignment pressure on the
weights during optimisation. As a result, those induced lin-
ear transforms become highly interpretable and align with
task-relevant features. Importantly, the B-cos transform is
designed to be compatible with existing architectures and
we show that it can easily be integrated into common mod-
els such as VGGs, ResNets, InceptionNets, and DenseNets,
whilst maintaining similar performance on ImageNet. The
resulting explanations are of high visual quality and per-
form well under quantitative metrics for interpretability.
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sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and
present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
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erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-
sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-
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Fig. A1. Illustration of the computations of a B-cos network. For a given input image (left), the model computes an input-dependent lin-
ear transform W1!L(x) (center). The scalar product between the input and the weights [W1!L(x)]c for class c (row c of W1!L(x)),
yields the class logits for the respective class. To obtain class probabilities (right), we apply the sigmoid function. Since the B-cos net-
works are trained with the BCE loss, they produce probabilities per class and not a probability distribution over classes. Thus, the proba-
bilities do not sum to 1. For illustration purposes, we only visualise the positive contributions according to W1!L(x).

A. Additional qualitative examples
In Fig. A1, we illustrate how the linear mappings W1!L(x) are used to compute the outputs of B-cos networks. In

particular, with this we would like to highlight that these linear mappings do not only constitute qualitatively convincing
visualisations. Instead, they in fact constitute the actual linear transformation matrix that the model effectively applies to the
input to compute its outputs and thus constitute an accurate summary of the model computations.

A.1. Additional explanations for class logits [DenseNet-121]
Comparisons between explanation methods In Fig. A2, we present additional comparisons between the model-inherent
explanations based on the linear mapping [W1!L(xi)]c and some post-hoc methods; in particular, we show results for Grad-
Cam (GCam) [S8], LIME [S7], Integrated Gradients (IntG) [S10], DeepLIFT [S9], and RISE [S6] on the most confidently
classified image of the first 12 classes. While GCam highlights similar regions and LIME can also yield explanations in
color, these explanations are post-hoc approximations of model behaviour. In contrast, the model-inherent explanations are
not only of higher visual quality, but also summarise the model computations for the presented classes accurately, cf. Fig. A1.
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Fig. A2. Comparison between the model-inherent explanations (‘Ours’) and various post-hoc explanation methods, evaluated for the most
confident image for the first 12 of the classes shown in Figs. A3 and A4. Note that for RISE we use its default colormap.
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-
pretability of deep neural networks (DNNs) by promoting
weight-input alignment during training. For this, we pro-
pose to replace the linear transforms in DNNs by our B-
cos transform1. As we show, a sequence (network) of such
transforms induces a single linear transform that faith-
fully summarises the full model computations. Moreover,
the B-cos transform introduces alignment pressure on the
weights during optimisation. As a result, those induced lin-
ear transforms become highly interpretable and align with
task-relevant features. Importantly, the B-cos transform is
designed to be compatible with existing architectures and
we show that it can easily be integrated into common mod-
els such as VGGs, ResNets, InceptionNets, and DenseNets,
whilst maintaining similar performance on ImageNet. The
resulting explanations are of high visual quality and per-
form well under quantitative metrics for interpretability.

1. Introduction
While deep neural networks (DNNs) are highly suc-

cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and
present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-
sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-

1

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVPR
#6365

CVPR
#6365

CVPR 2022 Submission #6365. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

B-cos Networks: Alignment is All We Need for Interpretability

Anonymous CVPR submission

Paper ID 6365

Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.
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We present a new direction for increasing the inter-
pretability of deep neural networks (DNNs) by promoting
weight-input alignment during training. For this, we pro-
pose to replace the linear transforms in DNNs by our B-
cos transform1. As we show, a sequence (network) of such
transforms induces a single linear transform that faith-
fully summarises the full model computations. Moreover,
the B-cos transform introduces alignment pressure on the
weights during optimisation. As a result, those induced lin-
ear transforms become highly interpretable and align with
task-relevant features. Importantly, the B-cos transform is
designed to be compatible with existing architectures and
we show that it can easily be integrated into common mod-
els such as VGGs, ResNets, InceptionNets, and DenseNets,
whilst maintaining similar performance on ImageNet. The
resulting explanations are of high visual quality and per-
form well under quantitative metrics for interpretability.
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cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and
present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
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erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-
sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-
pretability of deep neural networks (DNNs) by promoting
weight-input alignment during training. For this, we pro-
pose to replace the linear transforms in DNNs by our B-
cos transform1. As we show, a sequence (network) of such
transforms induces a single linear transform that faith-
fully summarises the full model computations. Moreover,
the B-cos transform introduces alignment pressure on the
weights during optimisation. As a result, those induced lin-
ear transforms become highly interpretable and align with
task-relevant features. Importantly, the B-cos transform is
designed to be compatible with existing architectures and
we show that it can easily be integrated into common mod-
els such as VGGs, ResNets, InceptionNets, and DenseNets,
whilst maintaining similar performance on ImageNet. The
resulting explanations are of high visual quality and per-
form well under quantitative metrics for interpretability.
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While deep neural networks (DNNs) are highly suc-

cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [28]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and
present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [23]) are accurately summarised by a linear transform
for every input [22]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-
1All code to reproduce our results will be made available.

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [31, 41]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].

Instead of optimising the explanation method, in this
work we aim to optimise the DNNs to inherently provide an
explanation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-
sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-
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Fig. A1. Illustration of the computations of a B-cos network. For a given input image (left), the model computes an input-dependent lin-
ear transform W1!L(x) (center). The scalar product between the input and the weights [W1!L(x)]c for class c (row c of W1!L(x)),
yields the class logits for the respective class. To obtain class probabilities (right), we apply the sigmoid function. Since the B-cos net-
works are trained with the BCE loss, they produce probabilities per class and not a probability distribution over classes. Thus, the proba-
bilities do not sum to 1. For illustration purposes, we only visualise the positive contributions according to W1!L(x).

A. Additional qualitative examples
In Fig. A1, we illustrate how the linear mappings W1!L(x) are used to compute the outputs of B-cos networks. In

particular, with this we would like to highlight that these linear mappings do not only constitute qualitatively convincing
visualisations. Instead, they in fact constitute the actual linear transformation matrix that the model effectively applies to the
input to compute its outputs and thus constitute an accurate summary of the model computations.

A.1. Additional explanations for class logits [DenseNet-121]
Comparisons between explanation methods In Fig. A2, we present additional comparisons between the model-inherent
explanations based on the linear mapping [W1!L(xi)]c and some post-hoc methods; in particular, we show results for Grad-
Cam (GCam) [S8], LIME [S7], Integrated Gradients (IntG) [S10], DeepLIFT [S9], and RISE [S6] on the most confidently
classified image of the first 12 classes. While GCam highlights similar regions and LIME can also yield explanations in
color, these explanations are post-hoc approximations of model behaviour. In contrast, the model-inherent explanations are
not only of higher visual quality, but also summarise the model computations for the presented classes accurately, cf. Fig. A1.
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Fig. A2. Comparison between the model-inherent explanations (‘Ours’) and various post-hoc explanation methods, evaluated for the most
confident image for the first 12 of the classes shown in Figs. A3 and A4. Note that for RISE we use its default colormap.
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Fig. 9. Explanations of 4 individual neurons in layer 87 of a DenseNet-121. For each neuron, we provide its index number n and its
concept description and specificity6(left). Further, we show the 6 most activating images for each neuron (top row per neuron), in which
we visualise the explanation for the highest (blue squares) activation; i.e., visualise the 72⇥72 center patch of the weighting [W1!l(x)]n
for neuron n. For some images, we additionally show the explanation for the 2nd highest activation (orange squares). Lastly, we show
the explanations of the highest activations (corresponding to the blue squares) for the next 26 images to highlight the neurons’ specificity.

Lastly, in Fig. 10, we show explanations of the two
most likely classes for images for which the model pro-
duces predictions with high uncertainty; additionally, we
show the �-Explanation, i.e., the difference in contribu-
tion maps for the two classes, see Eq. (15). By means of
the model-inherent linear mappings W1!L, the model pro-
vides a human-interpretable explanation for its uncertainty:
there are indeed features in each of those images that pro-
vide evidence for both of the predicted classes.

6. Conclusion

We presented a novel approach for endowing deep neu-
ral networks with a high degree of inherent interpretability.
In particular, we developed the B-cos transform as a mod-
ification of the linear transform to increase weight-input
alignment during optimisation and showed that this can sig-
nificantly increase interpretability. Importantly, the B-cos
transforms can be used as a drop-in replacement for the
ubiquitously used linear transforms in conventional DNNs
whilst only incurring minor drops in classification accuracy.
As such, our approach can increase the interpretability of
a wide range of DNNs at a low cost and thus holds great
potential to have a significant impact on the deep learn-
ing community. In particular, it shows that strong perfor-
mance and interpretability need not be at odds. Moreover,

6We manually evaluated the first 100 images to see if the concepts were
consistent. The dog tongue neuron fired thrice for snouts without tongue,
the watermark neuron twice for borders in image collages. Besides this,
all neurons consistently activated for images similar to those in Fig. 9.

Fig. 10. Col. 1: Input image. Cols. 2+3: Explanations for most
likely classes under the model. Col. 4: Difference of contribution
maps to the two class logits, i.e., sLc1(x) � sLc2(x), see Eq. (15);
positive values shown in orange (c1), negative values in blue (c2).

we demonstrate that by structurally constraining how the
neural networks are to solve an optimisation task—in the
case of B-cos networks via alignment—allows for extract-
ing explanations that faithfully reflect the underlying model.
We believe this to be an important step on the road towards
interpretable deep learning, which is an essential ingredient
for building trust in DNN-based decisions, specifically in
safety-critical situations.
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Interim Summary

• Deep Neural Network explanations need to be faithful & interpretable 
‣ for faithfulness: B-cos is designed to be dynamic linear 
‣ for interpretability: B-cos induces alignment pressure 

• The resulting networks are competitive classifiers... 

• ... and provide interpretable explanations for their decisions
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Overview

• Interpretability for Deep Learning in Computer Vision 

‣ Towards Better Understanding of Attribution Methods — CVPR’22, arXiv’23 [2303.11884] 

‣ Inherently Interpretable CNN Networks — CVPR’21, CVPR’22 

‣ Inherently Interpretable Transformer Networks — arXiv’23 [2301.08571]  

‣ Using Explanations to Guide Inherently Interpretable Models — ICCV’23
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Attention is not All You Need (for XAI)
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Attention is not All You Need (for XAI)

• Tokeniser + MLP + Classifier 
‣ interpret as CNNs,  

convert to B-cos CNNs 

• Self-Attention (SA) is dynamic linear 

‣
 

• For this talk: 
‣ for Tokenisation, use  layers of  

pretrained+frozen B-cos DenseNet-121

SA(X) = A(X) V
W(X)

X = W(X) X

L
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B-cos ViT
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Fig. 3: ImageNet accuracy of differently sized B-cos ViTs (Tiny,
Small, Base) depending on the positional encoding. We find B-
cos ViTs with Amul, see Eq. (19), to perform significantly better.

Fig. 4: In the localisation metric, we mea-
sure the fraction of pos. evidence assigned to
the correct grid cell for each occurring class.
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Fig. 5: ImageNet accuracies of B-cos ViTs with a multiplicative attention bias (Eq. (19)) compared to standard
ViTs and backbones, both for differently sized ViTs (Tiny, Small, Base) and backbones (13, 38, or 87 layers).
We find that the B-cos ViTs perform at least as well as the baseline ViTs over almost all tested configurations.

Explanation Methods. Apart from the model-inherent explanations (Eq. (7)), we evaluate two sets
of explanation methods. First, we follow Chefer et al. (2021) and evaluate common transformer-
specific explanations such as the attention in the final layer (FinAtt), attention rollout (Rollout) (Ab-
nar & Zuidema, 2020), a transformer-specific LRP implementation (CheferLRP) proposed by Chefer
et al. (2021), ‘partial LRP’(pLRP) (Voita et al., 2019), and ‘GradSAM’ (Barkan et al., 2021).
Further, we evaluate architecture-agnostic methods such as Integrated Gradients (IntGrad) (Sun-
dararajan et al., 2017), adapted GradCAM (Selvaraju et al., 2017) as in Chefer et al. (2021), and
‘Input⇥Gradient’ (IxG), cf. Adebayo et al. (2018). As no LRP rules are defined for B-cos ViTs we
only apply it to baseline models. For method details, we kindly refer the reader to the supplement.

We evaluate all of those methods (if applicable) to the proposed B-cos ViTs, as well as the baselines
consisting of conventional ViTs and backbones and compare them on the metrics described above.

5 RESULTS

In the following, we present our experimental results. Specifically, in Sec. 5.1 we analyse the classi-
fication performance of the B-cos ViTs: we investigate how the encoding of positional information
affects model accuracy (see Sec. 3.5) and compare the classification performance of B-cos and con-
ventional ViTs. Further, in Sec. 5.2, we evaluate the model-inherent explanations of the B-cos ViTs
against common post-hoc explanation methods evaluated on the same models. To highlight the gain
in interpretability over conventional ViT models, we also compare the inherent explanations of the
B-cos ViTs to the best post-hoc explanations evaluated on conventional ViTs, see supplement.

7

Attention is not All You Need (for XAI)

45

Results — classification accuracy

Under review as a conference paper at ICLR 2023

Fig. 3: ImageNet accuracy of differently sized B-cos ViTs (Tiny,
Small, Base) depending on the positional encoding. We find B-
cos ViTs with Amul, see Eq. (19), to perform significantly better.

Fig. 4: In the localisation metric, we mea-
sure the fraction of pos. evidence assigned to
the correct grid cell for each occurring class.

Tiny Small Base
Transformer size

60

70

80

To
p-1

ac
cu

rac
y(

%)

71.4 72.1
74.6

Conventional

71.1

74.3
75.6

B-cos

73.0
74.5 74.9

Conventional

74.2
75.7 76.6

B-cos

73.1
74.3 74.5

Conventional

74.9
76.6 76.7

B-cos

13 backbone layers 38 backbone layers 87 backbone layers

Fig. 5: ImageNet accuracies of B-cos ViTs with a multiplicative attention bias (Eq. (19)) compared to standard
ViTs and backbones, both for differently sized ViTs (Tiny, Small, Base) and backbones (13, 38, or 87 layers).
We find that the B-cos ViTs perform at least as well as the baseline ViTs over almost all tested configurations.

Explanation Methods. Apart from the model-inherent explanations (Eq. (7)), we evaluate two sets
of explanation methods. First, we follow Chefer et al. (2021) and evaluate common transformer-
specific explanations such as the attention in the final layer (FinAtt), attention rollout (Rollout) (Ab-
nar & Zuidema, 2020), a transformer-specific LRP implementation (CheferLRP) proposed by Chefer
et al. (2021), ‘partial LRP’(pLRP) (Voita et al., 2019), and ‘GradSAM’ (Barkan et al., 2021).
Further, we evaluate architecture-agnostic methods such as Integrated Gradients (IntGrad) (Sun-
dararajan et al., 2017), adapted GradCAM (Selvaraju et al., 2017) as in Chefer et al. (2021), and
‘Input⇥Gradient’ (IxG), cf. Adebayo et al. (2018). As no LRP rules are defined for B-cos ViTs we
only apply it to baseline models. For method details, we kindly refer the reader to the supplement.

We evaluate all of those methods (if applicable) to the proposed B-cos ViTs, as well as the baselines
consisting of conventional ViTs and backbones and compare them on the metrics described above.

5 RESULTS

In the following, we present our experimental results. Specifically, in Sec. 5.1 we analyse the classi-
fication performance of the B-cos ViTs: we investigate how the encoding of positional information
affects model accuracy (see Sec. 3.5) and compare the classification performance of B-cos and con-
ventional ViTs. Further, in Sec. 5.2, we evaluate the model-inherent explanations of the B-cos ViTs
against common post-hoc explanation methods evaluated on the same models. To highlight the gain
in interpretability over conventional ViT models, we also compare the inherent explanations of the
B-cos ViTs to the best post-hoc explanations evaluated on conventional ViTs, see supplement.

7

Under review as a conference paper at ICLR 2023

Fig. 3: ImageNet accuracy of differently sized B-cos ViTs (Tiny,
Small, Base) depending on the positional encoding. We find B-
cos ViTs with Amul, see Eq. (19), to perform significantly better.

Fig. 4: In the localisation metric, we mea-
sure the fraction of pos. evidence assigned to
the correct grid cell for each occurring class.

Tiny Small Base
Transformer size

60

70

80

To
p-1

ac
cu

rac
y(

%)

71.4 72.1
74.6

Conventional

71.1

74.3
75.6

B-cos

73.0
74.5 74.9

Conventional

74.2
75.7 76.6

B-cos

73.1
74.3 74.5

Conventional

74.9
76.6 76.7

B-cos

13 backbone layers 38 backbone layers 87 backbone layers

Fig. 5: ImageNet accuracies of B-cos ViTs with a multiplicative attention bias (Eq. (19)) compared to standard
ViTs and backbones, both for differently sized ViTs (Tiny, Small, Base) and backbones (13, 38, or 87 layers).
We find that the B-cos ViTs perform at least as well as the baseline ViTs over almost all tested configurations.

Explanation Methods. Apart from the model-inherent explanations (Eq. (7)), we evaluate two sets
of explanation methods. First, we follow Chefer et al. (2021) and evaluate common transformer-
specific explanations such as the attention in the final layer (FinAtt), attention rollout (Rollout) (Ab-
nar & Zuidema, 2020), a transformer-specific LRP implementation (CheferLRP) proposed by Chefer
et al. (2021), ‘partial LRP’(pLRP) (Voita et al., 2019), and ‘GradSAM’ (Barkan et al., 2021).
Further, we evaluate architecture-agnostic methods such as Integrated Gradients (IntGrad) (Sun-
dararajan et al., 2017), adapted GradCAM (Selvaraju et al., 2017) as in Chefer et al. (2021), and
‘Input⇥Gradient’ (IxG), cf. Adebayo et al. (2018). As no LRP rules are defined for B-cos ViTs we
only apply it to baseline models. For method details, we kindly refer the reader to the supplement.

We evaluate all of those methods (if applicable) to the proposed B-cos ViTs, as well as the baselines
consisting of conventional ViTs and backbones and compare them on the metrics described above.

5 RESULTS

In the following, we present our experimental results. Specifically, in Sec. 5.1 we analyse the classi-
fication performance of the B-cos ViTs: we investigate how the encoding of positional information
affects model accuracy (see Sec. 3.5) and compare the classification performance of B-cos and con-
ventional ViTs. Further, in Sec. 5.2, we evaluate the model-inherent explanations of the B-cos ViTs
against common post-hoc explanation methods evaluated on the same models. To highlight the gain
in interpretability over conventional ViT models, we also compare the inherent explanations of the
B-cos ViTs to the best post-hoc explanations evaluated on conventional ViTs, see supplement.

7



Interpretability of Deep Learning in Computer Vision | Bernt Schiele

Under review as a conference paper at ICLR 2023

Fig. 3: ImageNet accuracy of differently sized B-cos ViTs (Tiny,
Small, Base) depending on the positional encoding. We find B-
cos ViTs with Amul, see Eq. (19), to perform significantly better.

Fig. 4: In the localisation metric, we mea-
sure the fraction of pos. evidence assigned to
the correct grid cell for each occurring class.

Tiny Small Base
Transformer size

60

70

80
To

p-1
ac

cu
rac

y(
%)

71.4 72.1
74.6

Conventional

71.1

74.3
75.6

B-cos

73.0
74.5 74.9

Conventional

74.2
75.7 76.6

B-cos

73.1
74.3 74.5

Conventional

74.9
76.6 76.7

B-cos

13 backbone layers 38 backbone layers 87 backbone layers

Fig. 5: ImageNet accuracies of B-cos ViTs with a multiplicative attention bias (Eq. (19)) compared to standard
ViTs and backbones, both for differently sized ViTs (Tiny, Small, Base) and backbones (13, 38, or 87 layers).
We find that the B-cos ViTs perform at least as well as the baseline ViTs over almost all tested configurations.

Explanation Methods. Apart from the model-inherent explanations (Eq. (7)), we evaluate two sets
of explanation methods. First, we follow Chefer et al. (2021) and evaluate common transformer-
specific explanations such as the attention in the final layer (FinAtt), attention rollout (Rollout) (Ab-
nar & Zuidema, 2020), a transformer-specific LRP implementation (CheferLRP) proposed by Chefer
et al. (2021), ‘partial LRP’(pLRP) (Voita et al., 2019), and ‘GradSAM’ (Barkan et al., 2021).
Further, we evaluate architecture-agnostic methods such as Integrated Gradients (IntGrad) (Sun-
dararajan et al., 2017), adapted GradCAM (Selvaraju et al., 2017) as in Chefer et al. (2021), and
‘Input⇥Gradient’ (IxG), cf. Adebayo et al. (2018). As no LRP rules are defined for B-cos ViTs we
only apply it to baseline models. For method details, we kindly refer the reader to the supplement.

We evaluate all of those methods (if applicable) to the proposed B-cos ViTs, as well as the baselines
consisting of conventional ViTs and backbones and compare them on the metrics described above.

5 RESULTS

In the following, we present our experimental results. Specifically, in Sec. 5.1 we analyse the classi-
fication performance of the B-cos ViTs: we investigate how the encoding of positional information
affects model accuracy (see Sec. 3.5) and compare the classification performance of B-cos and con-
ventional ViTs. Further, in Sec. 5.2, we evaluate the model-inherent explanations of the B-cos ViTs
against common post-hoc explanation methods evaluated on the same models. To highlight the gain
in interpretability over conventional ViT models, we also compare the inherent explanations of the
B-cos ViTs to the best post-hoc explanations evaluated on conventional ViTs, see supplement.

7

Under review as a conference paper at ICLR 2023

Fig. 3: ImageNet accuracy of differently sized B-cos ViTs (Tiny,
Small, Base) depending on the positional encoding. We find B-
cos ViTs with Amul, see Eq. (19), to perform significantly better.

Fig. 4: In the localisation metric, we mea-
sure the fraction of pos. evidence assigned to
the correct grid cell for each occurring class.

Tiny Small Base
Transformer size

60

70

80

To
p-1

ac
cu

rac
y(

%)

71.4 72.1
74.6

Conventional

71.1

74.3
75.6

B-cos

73.0
74.5 74.9

Conventional

74.2
75.7 76.6

B-cos

73.1
74.3 74.5

Conventional

74.9
76.6 76.7

B-cos

13 backbone layers 38 backbone layers 87 backbone layers

Fig. 5: ImageNet accuracies of B-cos ViTs with a multiplicative attention bias (Eq. (19)) compared to standard
ViTs and backbones, both for differently sized ViTs (Tiny, Small, Base) and backbones (13, 38, or 87 layers).
We find that the B-cos ViTs perform at least as well as the baseline ViTs over almost all tested configurations.

Explanation Methods. Apart from the model-inherent explanations (Eq. (7)), we evaluate two sets
of explanation methods. First, we follow Chefer et al. (2021) and evaluate common transformer-
specific explanations such as the attention in the final layer (FinAtt), attention rollout (Rollout) (Ab-
nar & Zuidema, 2020), a transformer-specific LRP implementation (CheferLRP) proposed by Chefer
et al. (2021), ‘partial LRP’(pLRP) (Voita et al., 2019), and ‘GradSAM’ (Barkan et al., 2021).
Further, we evaluate architecture-agnostic methods such as Integrated Gradients (IntGrad) (Sun-
dararajan et al., 2017), adapted GradCAM (Selvaraju et al., 2017) as in Chefer et al. (2021), and
‘Input⇥Gradient’ (IxG), cf. Adebayo et al. (2018). As no LRP rules are defined for B-cos ViTs we
only apply it to baseline models. For method details, we kindly refer the reader to the supplement.

We evaluate all of those methods (if applicable) to the proposed B-cos ViTs, as well as the baselines
consisting of conventional ViTs and backbones and compare them on the metrics described above.

5 RESULTS

In the following, we present our experimental results. Specifically, in Sec. 5.1 we analyse the classi-
fication performance of the B-cos ViTs: we investigate how the encoding of positional information
affects model accuracy (see Sec. 3.5) and compare the classification performance of B-cos and con-
ventional ViTs. Further, in Sec. 5.2, we evaluate the model-inherent explanations of the B-cos ViTs
against common post-hoc explanation methods evaluated on the same models. To highlight the gain
in interpretability over conventional ViT models, we also compare the inherent explanations of the
B-cos ViTs to the best post-hoc explanations evaluated on conventional ViTs, see supplement.

7

Under review as a conference paper at ICLR 2023

Fig. 3: ImageNet accuracy of differently sized B-cos ViTs (Tiny,
Small, Base) depending on the positional encoding. We find B-
cos ViTs with Amul, see Eq. (19), to perform significantly better.

Fig. 4: In the localisation metric, we mea-
sure the fraction of pos. evidence assigned to
the correct grid cell for each occurring class.

Tiny Small Base
Transformer size

60

70

80

To
p-1

ac
cu

rac
y(

%)

71.4 72.1
74.6

Conventional

71.1

74.3
75.6

B-cos

73.0
74.5 74.9

Conventional

74.2
75.7 76.6

B-cos

73.1
74.3 74.5

Conventional

74.9
76.6 76.7

B-cos

13 backbone layers 38 backbone layers 87 backbone layers

Fig. 5: ImageNet accuracies of B-cos ViTs with a multiplicative attention bias (Eq. (19)) compared to standard
ViTs and backbones, both for differently sized ViTs (Tiny, Small, Base) and backbones (13, 38, or 87 layers).
We find that the B-cos ViTs perform at least as well as the baseline ViTs over almost all tested configurations.

Explanation Methods. Apart from the model-inherent explanations (Eq. (7)), we evaluate two sets
of explanation methods. First, we follow Chefer et al. (2021) and evaluate common transformer-
specific explanations such as the attention in the final layer (FinAtt), attention rollout (Rollout) (Ab-
nar & Zuidema, 2020), a transformer-specific LRP implementation (CheferLRP) proposed by Chefer
et al. (2021), ‘partial LRP’(pLRP) (Voita et al., 2019), and ‘GradSAM’ (Barkan et al., 2021).
Further, we evaluate architecture-agnostic methods such as Integrated Gradients (IntGrad) (Sun-
dararajan et al., 2017), adapted GradCAM (Selvaraju et al., 2017) as in Chefer et al. (2021), and
‘Input⇥Gradient’ (IxG), cf. Adebayo et al. (2018). As no LRP rules are defined for B-cos ViTs we
only apply it to baseline models. For method details, we kindly refer the reader to the supplement.

We evaluate all of those methods (if applicable) to the proposed B-cos ViTs, as well as the baselines
consisting of conventional ViTs and backbones and compare them on the metrics described above.

5 RESULTS

In the following, we present our experimental results. Specifically, in Sec. 5.1 we analyse the classi-
fication performance of the B-cos ViTs: we investigate how the encoding of positional information
affects model accuracy (see Sec. 3.5) and compare the classification performance of B-cos and con-
ventional ViTs. Further, in Sec. 5.2, we evaluate the model-inherent explanations of the B-cos ViTs
against common post-hoc explanation methods evaluated on the same models. To highlight the gain
in interpretability over conventional ViT models, we also compare the inherent explanations of the
B-cos ViTs to the best post-hoc explanations evaluated on conventional ViTs, see supplement.

7

Attention is not All You Need (for XAI)

• Results

46

Results — classification accuracy



Interpretability of Deep Learning in Computer Vision | Bernt Schiele

Under review as a conference paper at ICLR 2023

Fig. 3: ImageNet accuracy of differently sized B-cos ViTs (Tiny,
Small, Base) depending on the positional encoding. We find B-
cos ViTs with Amul, see Eq. (19), to perform significantly better.
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et al. (2021), ‘partial LRP’(pLRP) (Voita et al., 2019), and ‘GradSAM’ (Barkan et al., 2021).
Further, we evaluate architecture-agnostic methods such as Integrated Gradients (IntGrad) (Sun-
dararajan et al., 2017), adapted GradCAM (Selvaraju et al., 2017) as in Chefer et al. (2021), and
‘Input⇥Gradient’ (IxG), cf. Adebayo et al. (2018). As no LRP rules are defined for B-cos ViTs we
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of explanation methods. First, we follow Chefer et al. (2021) and evaluate common transformer-
specific explanations such as the attention in the final layer (FinAtt), attention rollout (Rollout) (Ab-
nar & Zuidema, 2020), a transformer-specific LRP implementation (CheferLRP) proposed by Chefer
et al. (2021), ‘partial LRP’(pLRP) (Voita et al., 2019), and ‘GradSAM’ (Barkan et al., 2021).
Further, we evaluate architecture-agnostic methods such as Integrated Gradients (IntGrad) (Sun-
dararajan et al., 2017), adapted GradCAM (Selvaraju et al., 2017) as in Chefer et al. (2021), and
‘Input⇥Gradient’ (IxG), cf. Adebayo et al. (2018). As no LRP rules are defined for B-cos ViTs we
only apply it to baseline models. For method details, we kindly refer the reader to the supplement.

We evaluate all of those methods (if applicable) to the proposed B-cos ViTs, as well as the baselines
consisting of conventional ViTs and backbones and compare them on the metrics described above.

5 RESULTS

In the following, we present our experimental results. Specifically, in Sec. 5.1 we analyse the classi-
fication performance of the B-cos ViTs: we investigate how the encoding of positional information
affects model accuracy (see Sec. 3.5) and compare the classification performance of B-cos and con-
ventional ViTs. Further, in Sec. 5.2, we evaluate the model-inherent explanations of the B-cos ViTs
against common post-hoc explanation methods evaluated on the same models. To highlight the gain
in interpretability over conventional ViT models, we also compare the inherent explanations of the
B-cos ViTs to the best post-hoc explanations evaluated on conventional ViTs, see supplement.
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Qualitative Results — Interpretability
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Fig. 6: Quantitative comparison of explanation methods according to two metrics: localisation (left) and per-
turbation (right); for a description of metrics and methods, see Sec. 4. We evaluated the methods for all B-cos
ViTs shown in Fig. 5 and plot the corresponding scores (markers). We also plot the mean score over all models
(dashed lines) per method and the average improvement of the model-inherent over the best post-hoc explana-
tion (localisation:⇥2.47, perturbation:⇥1.99). Note that for the perturbation metric, we normalised the area
between curves (ABC) by the scores of the model-inherent explanations for better cross-model comparison.

5.1 CLASSIFICATION PERFORMANCE OF B-COS VITS

In Fig. 3, we compare the top-1 ImageNet accuracy of various B-cos ViTs trained on the feature
embeddings of the 87th layer of a frozen5 B-cos DenseNet-121 (Böhle et al., 2022). Specifically, we
compare ViTs of different sizes (Tiny, Small, Base) and with different ways of allowing the models
to use positional information, see Eqs. (2), (18) and (19). We find that the multiplicative attention
bias, see Eq. (19), consistently yields significant gains in performance. As discussed in Sec. 3.5, we
believe this could be due to the higher disentanglement between content and positional information.
However, in preliminary experiments with conventional ViTs, we did not observe significant benefits
from such a multiplicative prior and this seems to be particularly advantageous for B-cos ViTs.

Interestingly, once trained with such a multiplicative attention prior, we find the B-cos ViTs to
perform at least as good as their conventional counterparts over a wide range of configurations, see
Fig. 5; we find consistent results even without MaxOut in the Transformer layers (cf. Sec. 3), as we
show in Appendix B.3. However, these results have to be interpreted with caution: ViTs are known
to be highly sensitive to, e.g., the amount of data augmentation, the number of training iterations,
and model regularisation, see Steiner et al. (2021). Moreover, our goal in this work is to develop
interpretable ViTs and our focus thus lies on evaluating the quality of the explanations (Sec. 5.2).

5.2 INTERPRETABILITY OF B-COS VITS

Here, we assess how well the inherent explanations (Eq. (7)) of B-cos ViTs explain their output and
compare to common post-hoc explanations; for comparisons to baseline ViTs, see supplement.

Localisation Metric. In Fig. 6 (left), we plot the mean localisation score per model configuration
(B-cos ViT-{size}-{L}) and explanation method, see Sec. 4. We find that across all configurations,
the model-inherent explanations according to Eq. (7) yield by far the best results under this metric
and outperform the best post-hoc explanation for the B-cos ViTs (Rollout) by a factor of 2.47.

Pixel Perturbation. As for the localisation, in Fig. 6 (right), we plot the normalised mean area
between the curves (ABC) per model configuration and explanation method of the B-cos ViTs.
Specifically, the mean ABC is computed as the mean area between the curves when first removing
the most / least important pixels from the images; we normalise the mean ABC for each explanation
by the mean ABC of the model-inherent explanation (Ours) per model configuration to facilitate
cross-model comparisons. Again, the model-inherent explanations perform best and, on average,
they outperform the second best post-hoc method (Rollout) on B-cos ViTs by a factor of 1.99.

Qualitative Examples. In Figs. 1 and 7, we qualitatively compare the inherent explanations (size: B,
38 backbone layers, see Fig. 5) to post-hoc explanations evaluated on the same model. As becomes
apparent, the model-inherent summaries not only perform well quantitatively (cf. Fig. 6), but are also
qualitatively convincing. Colour visualisations as in Böhle et al. (2022); more results in supplement.
In contrast to attention explanations, which are not class-specific (Chefer et al., 2021), we find the

5We chose to freeze the backbones to reduce the computational cost and compare the architectures across a wide
range of settings. We observed comparable results when training the full models for individual architectures.
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Fig. 3: ImageNet accuracy of differently sized B-cos ViTs (Tiny,
Small, Base) depending on the positional encoding. We find B-
cos ViTs with Amul, see Eq. (19), to perform significantly better.
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Evidence for Taxi / Cab

Input
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Example

Fig. 4: In the localisation metric, we mea-
sure the fraction of pos. evidence assigned to
the correct grid cell for each occurring class.

Fig. 5: ImageNet accuracies of B-cos ViTs with a multiplicative attention bias (Eq. (19)) compared to standard
ViTs and backbones, both for differently sized ViTs (Tiny, Small, Base) and backbones (13, 38, or 87 layers).
We find that the B-cos ViTs perform at least as well as the baseline ViTs over almost all tested configurations.

Explanation Methods. Apart from the model-inherent explanations (Eq. (7)), we evaluate two sets
of explanation methods. First, we follow Chefer et al. (2021) and evaluate common transformer-
specific explanations such as the attention in the final layer (FinAtt), attention rollout (Rollout) (Ab-
nar & Zuidema, 2020), a transformer-specific LRP implementation (CheferLRP) proposed by Chefer
et al. (2021), ‘partial LRP’(pLRP) (Voita et al., 2019), and ‘GradSAM’ (Barkan et al., 2021).
Further, we evaluate architecture-agnostic methods such as Integrated Gradients (IntGrad) (Sun-
dararajan et al., 2017), adapted GradCAM (Selvaraju et al., 2017) as in Chefer et al. (2021), and
‘Input⇥Gradient’ (IxG), cf. Adebayo et al. (2018). As no LRP rules are defined for B-cos ViTs we
only apply it to baseline models. For method details, we kindly refer the reader to the supplement.

We evaluate all of those methods (if applicable) to the proposed B-cos ViTs, as well as the baselines
consisting of conventional ViTs and backbones and compare them on the metrics described above.

5 RESULTS

In the following, we present our experimental results. Specifically, in Sec. 5.1 we analyse the classi-
fication performance of the B-cos ViTs: we investigate how the encoding of positional information
affects model accuracy (see Sec. 3.5) and compare the classification performance of B-cos and con-
ventional ViTs. Further, in Sec. 5.2, we evaluate the model-inherent explanations of the B-cos ViTs
against common post-hoc explanation methods evaluated on the same models. To highlight the gain
in interpretability over conventional ViT models, we also compare the inherent explanations of the
B-cos ViTs to the best post-hoc explanations evaluated on conventional ViTs, see supplement.
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Attention is not All You Need (for XAI) - Summary

• B-cos framework generally compatible with ViTs 
‣ Attention already dynamic linear  

‣ remaining modules  B-cos CNNs 

• B-cos ViTs can be highly performant 
‣ similar results as with standard ViTs in comparable setting 

• B-cos ViTs highly interpretable 
‣ similar interpretability as B-cos CNNs

SA(X) = W(X)X
→
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Overview

• Interpretability for Deep Learning in Computer Vision 

‣ Towards Better Understanding of Attribution Methods — CVPR’22, arXiv’23 [2303.11884] 

‣ Inherently Interpretable CNN Networks — CVPR’21, CVPR’22 

‣ Inherently Interpretable Transformer Networks — arXiv’23 [2301.08571]  

‣ Using Explanations to Guide Inherently Interpretable Models — ICCV’23
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Motivation

• Deep networks may rely on spurious features 
 
 
 
 
 
 
 
 
 
 
 
 

• Idea: Guide models to be “right for the right reasons”
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Guiding Models: Pipeline
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Guiding Models: Pipeline
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Guiding Models: Pipeline
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Guiding Models: Pipeline
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Guiding Models: Pipeline
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Related Work

• Explicit Guidance: Specify where the model should look 
• Forms of Guidance: 
‣ Language Models (e.g. GALS [Petryk et al., 2022]): 

‣ Image Annotation Masks (e.g. RES [Gao et al., 2022]):
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Annotated Image Baseline RES-L

Image Source: Petryk et al. On Guiding Visual Attention with Language Specification. CVPR 2022

Image Source: Gao et al. RES: A Robust Framework for Guiding Visual Explanation. KDD 2022 

Our Focus

With coarse 
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i.e. bounding boxes



Interpretability of Deep Learning in Computer Vision | Bernt Schiele

Related Work: Guidance with Annotations

• Datasets are often: 
‣ Small: a few hundred or thousand images 
‣ Simple: binary classification 
‣ Synthetic: constructed, often not using natural images 

• Attribution methods: 

‣ Fixed, usually GradCAM 
‣ Coarse grained, explain only the final layer 

• Localization losses: 

‣ Often (e.g. with  loss) enforce uniformity in maskL1
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Ours

Large scale, multi-label 
classification datasets 

(PASCAL VOC, MS COCO)

Diverse set of attribution 
methods at multiple depths

Novel Energy loss, 
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loss functions
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Localization Losses from Prior Work

• Localization Losses from Prior Work: 

‣  Loss 

‣ Per-pixel Cross Entropy (PPCE) Loss 
‣ RRR* Loss (extended from RRR Loss)

L1
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Localization Losses from Prior Work

•  Loss: 

‣ Minimize  distance between normalised attributions and annotation 

‣ Guides model to attribute uniformly to existing highest attribution value

L1
L1
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Minimize  distanceL1
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Attributions distributed 
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Localization Losses from Prior Work

• Per-pixel cross entropy (PPCE) Loss: 
‣ Use cross-entropy loss at every pixel inside bounding box 
‣ No explicit constraint on attributions outside the box
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Cross entropy at each 
pixel inside box

Attribution Map Bounding Box
After Guidance
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Localization Losses from Prior Work

• RRR* Loss: 
‣ Minimizes square of attributions outside box
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Suppress attributions 
outside box

Attribution Map Bounding Box
After Guidance

Sparse attributions, 
localizes well 

qualitatively, not as 
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Image
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Localization Losses from Prior Work

• Localization Losses from Prior Work: 

‣  Loss 

‣ Per-pixel Cross Entropy (PPCE) Loss 
‣ RRR* Loss (extended from RRR Loss) 

• Ours: Energy Loss

L1
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Energy Loss

• Energy Loss 
‣ Maximize fraction of attributions inside box (Energy Pointing Game metric) 
‣ Model not pressured to optimize uniformly
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L1 vs. Energy loss

• Popular in prior work:  loss 
 
 
 
 

• Our Energy loss

L1
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+
k,hw

k1

<latexit sha1_base64="pilZEoENqd9ZontjAEiGsEAho7w="></latexit>

Lloc,k = �
P

H

h=1

P
W

w=1 Mk,hwA
+
k,hwP

H

h=1

P
W

w=1 A
+
k,hw



Interpretability of Deep Learning in Computer Vision | Bernt Schiele

L1 vs. Energy loss

• Popular in prior work:  loss 

• Our Energy loss

L1
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Qualitative Results
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Preliminaries: Visualizing Pareto Fronts

72
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Preliminaries: Visualizing Pareto Fronts
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Quantitative Results — Preliminaries: Visualizing Pareto Fronts
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Quantitative Results: PASCAL VOC
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Making guidance cost effective

• So far: 
‣ Model guidance helps direct focus on object 

‣ Energy loss more effectively for focuses on object features as compared to  

• Challenge: 
‣ Needs bounding box annotations for a large number of images — costly 

• Reducing annotation cost: 
‣ What if we have annotations only for a small fraction of training images? 
‣ What if bounding box annotations are imprecise and noisy?

L1
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Making guidance cost effective

• What if we have annotations only for a small fraction of training images? 
• Experiment: Use bounding box annotations of only 1% and 10% of training data 

• Using 10% annotations performs very similar to using 100% annotations 
• Gains even with 1% annotations
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Making guidance cost effective

• What if bounding box annotations are imprecise and noisy? (Easier to annotate) 
• Experiment:  
‣ Dilate bounding box to various degrees during training 
‣ Evaluate with original bounding boxes
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Making guidance cost effective

• What if bounding box annotations are imprecise and noisy? (Easier to annotate) 

• Energy loss robust, localisation worsens with  lossL1
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Making guidance cost effective

• What if bounding box annotations are imprecise and noisy? (Easier to annotate) 

• Energy loss robust, localisation worsens with  lossL1
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Effectiveness against spurious correlations

• Experiment: Waterbirds-100, synthetically constructed 

• Training Data: 
 
 
 
 
 
 

• Test Data:
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Effectiveness against spurious correlations

• Model guidance shifts focus to the object features, improves accuracy
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• Guidance can control whether to focus on the foreground or background

Effectiveness against spurious correlations

83
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• Guidance can control whether to focus on the foreground or background

Effectiveness against spurious correlations
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Summary

• Problem: 
‣ Models may reason incorrectly even if they perform well 
‣ Model guidance can help, but so far not fully explored 

• Contributions: 
‣ Propose novel Energy loss 
‣ Perform comprehensive evaluation on large datasets 
‣ Show robustness and efficiency of approach 
‣ Show utility against spurious correlations 

• Outcomes: 
‣ Energy loss effective in improving focus, even on large datasets 
‣ Works with noisy or limited annotations 
‣ Can improve model performance
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B-cos Networks: Alignment is All We Need for Interpretability
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Fig. 1. Top: Inputs xi to a B-cos DenseNet-121. Bottom: B-cos network explanation for class c (c: image label). Specifically, we visualise
the c-th row of W1!L(xi) as applied by the model, see Eq. (13); no masking of the original image is used for these visualisations. For
the last 2 images, we also show the explanation for the 2nd most likely class. For details on the visualisation of W1!L(xi), see Sec. 4.

Abstract

We present a new direction for increasing the inter-
pretability of deep neural networks (DNNs) by promoting
weight-input alignment during training. For this, we pro-
pose to replace the linear transforms in DNNs by our B-
cos transform. As we show, a sequence (network) of such
transforms induces a single linear transform that faith-
fully summarises the full model computations. Moreover,
the B-cos transform introduces alignment pressure on the
weights during optimisation. As a result, those induced lin-
ear transforms become highly interpretable and align with
task-relevant features. Importantly, the B-cos transform is
designed to be compatible with existing architectures and
we show that it can easily be integrated into common mod-
els such as VGGs, ResNets, InceptionNets, and DenseNets,
whilst maintaining similar performance on ImageNet. The
resulting explanations are of high visual quality and per-
form well under quantitative metrics for interpretability.
Code available at github.com/moboehle/B-cos.

1. Introduction
While deep neural networks (DNNs) are highly suc-

cessful in a wide range of tasks, explaining their deci-
sions remains an open research problem [30]. The diffi-
culty here lies in the fact that such explanations need to
faithfully summarise the internal model computations and
present them in a human-interpretable manner. E.g., it
is well known that piece-wise linear models (e.g., ReLU-
based [25]) are accurately summarised by a linear transform
for every input [24]. However, despite providing an accu-
rate summary, these piece-wise linear transforms are gen-

erally not intuitively interpretable for humans and typically
perform poorly under quantitative interpretability metrics,
cf. [33, 44]. Recent work thus aimed to improve the expla-
nations’ interpretability, often focusing on their visual qual-
ity [2]. However, gains in the visual quality of the explana-
tions often came at the cost of their model-faithfulness [2].
Instead of optimising the explanation method, in this work
we aim to optimise the DNNs to inherently provide an ex-
planation that fulfills the aforementioned requirements—
the resulting explanations constitute both a faithful sum-
mary and have a clear interpretation for humans. For this,
we propose the B-cos transform as a drop-in replacement
for linear transforms. As such, the B-cos transform can eas-
ily be integrated into a wide range of existing DNN archi-
tectures and we show that the resulting B-cos DNNs provide
high-quality explanations for their decisions, see Fig. 1.

To ensure that these explanations constitute a faithful
summary of the models, we design the B-cos transform as
an input-dependent linear transform. Importantly, any se-
quence of such transforms therefore induces a single linear
transform that faithfully summarises the entire sequence. In
order to make the induced linear transforms interpretable,
the B-cos transform is designed to induce alignment pres-
sure on the weights during optimisation, which optimises
the model weights to align with task-relevant input pat-
terns. The linear transform induced by the model thus has
a clear interpretation: it is a direct reflection of the weights
the model has learnt during training and specifically reflects
those weights that best align with a given input.

In summary, we make the following contributions:
(1) We introduce the B-cos transform to improve neural
network interpretability. By promoting weight-input align-
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